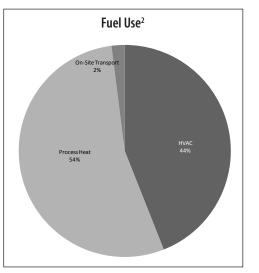
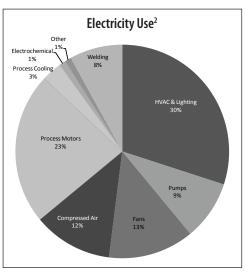

Transportation Equipment Manufacturing

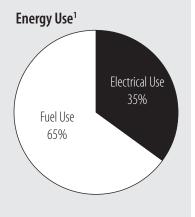
Sub-sector Description

Facilities in this sub-sector utilize production processes similar to those of other machinery manufacturing establishments: bending, forming, welding, machining, and assembling metal or plastic parts into components and finished products. These particular facilities produce equipment for transporting people and goods.

Facility Type	SIC	NAICS	Facility Type	SIC	NAICS
Ship and boat building	3732	336611	Other transportation equip.	3799	336910
Machine shops, other mfg	3599	332710	Motor vehicle body & trailer mfg	3711	336211
Bus and other vehicle mfg	3713	336211	Boat manufacturing	3732	336612


Process Information




Benchmarks

Thermal and electrical benchmarks were unable to be reliably derived from facility-specific energy use, sales, employee numbers, and area data. For more information about the benchmarking study that MnTAP conducted and how to determine if your facility may have energy efficiency opportunities remaining, view the report Web pages at http://www.mntap.umn.edu/resources/DOC/index.html.

Energy Use Footprints

Savings Potential

Opportunities and technologies for energy conservation were identified for facilities within this sub-sector. Industry case studies and reports of implementation were used to determine what opportunities may be available and achievable savings from those opportunities. However, additional energy conservation measures may apply to your facility. The tables on Page 2 of this summary reflect a number of energy conservation measures available for this sub-sector.

Estimated Electric Savings: 19%

Minnesota Technical Assistance Program UNIVERSITY OF MINNESOTA

MnTAP researched and analyzed this sub-sector for an electric utility. Therefore, fuel savings opportunities and an estimate of potential savings were not identified as part of MnTAP's industrial energy efficiency study.

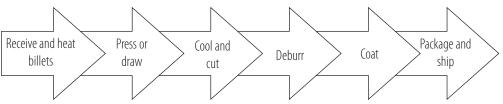
Electric Savings Estimate and Opportunities

Improvement / Opportunity	Estimated Payback	Reported Savings	Overall Savings
Process Improvements and Optimization			
Reduce compressed air pressure to minimum required and repair leaks ³	< 1 year	4.3%	
Update compressor controls and intake location ⁴	< 1 year	3.4%	
Replace motors with soft-start or ASD supplies ⁵	2 years	1.5%	
Properly size motors and pumps, select efficient replacements ⁶	3 years	1.9%	
Turn off equipment when not in use or reduce power consumption in stand-by ⁷	< 1 year	1.7%	
Optimize plant power factor, install power factor correction devices ⁸	1-2 years	0.02%	
Fan and paint ventilation optimization and modification ²	2-3 years	5.0%	
Welding control and inverter technologies9	5 years	5.0%	
Facility Improvements			
Facility HVAC improvements ²	< 1 year	2.0%	1
Lighting improvements ¹⁰	2 years	3.0%	1
TOTAL ELECTRICAL SAVINGS ESTIMATE			19 %

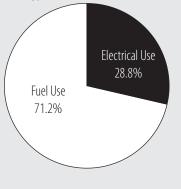
References

- ¹ IAC Industrial Assessments. DOE. http://iac.rutgers.edu/database/assessments.php
- ² C. Galitsky and E. Worrell. Energy Efficiency Improvement and Cost Savings Opportunities for the Vehicle Assembly Industry. Lawrence Berkley National Laboratory. January 2003.
- ³ IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=TA0067
- ⁴ IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=SU0228
- ⁵ IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=SD0394
- ⁶ IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=OK0662
- ⁷ IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=SF0304
- ⁸ IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=UU0050
- ⁹ http://www.americanmachinist.com/304/Issue/Article/False/9124/Issue

¹⁰ A. Price and M.H. Ross. Reducing Industrial Electricity Costs - An Automotive Case Study. The Electricity Journal, July 1989: 40-51.


Metal Tube Manufacturing

Sub-sector Description

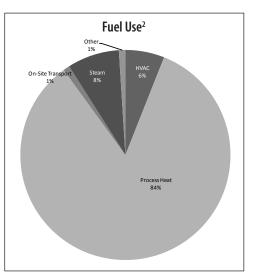

This industry group includes facilities establishments primarily engaged in manufacturing iron and steel tube and pipe, drawing steel wire, and rolling or drawing shapes from purchased iron, steel, or aluminum.

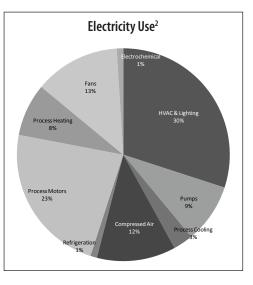
Facility Type	SIC	NAICS	Facility Type	SIC	NAICS
Steel pipe & tube manufacturing	3317	331210	Alum. tubing & extruded prod.	3354	331315

Process Information

Energy Use¹

Benchmarks


Thermal and electrical benchmarks were unable to be reliably derived from facility-specific energy use, sales, employee numbers, and area data. For more information about the benchmarking study that MnTAP conducted and how to determine if your facility may have energy efficiency opportunities remaining, view the report Web pages at http://www.mntap.umn.edu/resources/DOC/index.html.


Savings Potential

Opportunities and technologies for energy conservation were identified for facilities within this sub-sector. Industry case studies and reports of implementation were used to determine what opportunities may be available and achievable savings from those opportunities. However, additional energy conservation measures may apply to your facility. The tables on Page 2 of this summary reflect a number of energy conservation measures available for this sub-sector.

Estimated Fuel Savings: 42%

Energy Use Footprints

Minnesota Technical Assistance Program

Improvement / Opportunity	Estimated Payback	Reported Savings	Overall Savings
Process Heat System Optimization ³			
Boiler O₂ tuning ⁴	< 2 years	5-25%	
Insulate bare equipment and piping ⁵	2 years	2-15%	
Heat recovery of flue gas to preheat combustion air or heat secondary operations ⁶	5 years	10-25%, 33%	
Improve process measurements, control, and calibration ⁶	3 years	5-10%	
Upgrade heating and heat-treating equipment for better efficiency ⁷	8 years	5-10%	
Heat Recovery			
Recover heat from compressed air systems ⁸	4 years	4%	
Recover heat from material processing ⁹	4 years	59%	
Recover heat from flue gas to heat boiler water ⁹	4 years	1%	
Facility HVAC Improvements			
Use efficient building insulation ¹⁰	2 years	1%	
Destratify air with circulation fans ¹¹	2 years	7%	
Use radiant heat for spot heating parts ⁴	7 years	19%	1
TOTAL FUEL SAVINGS ESTIMATE			42%

Electric Savings Estimate and Opportunities

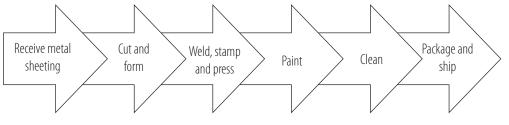
MnTAP researched and analyzed this sub-sector for a natural gas utility. Therefore, electric savings opportunities and an estimate of potential savings were not identified as part of MnTAP's industrial energy efficiency study.

References

- ¹ IAC Industrial Assessments. DOE. http://iac.rutgers.edu/database/assessments.php
- ² DOE Aluminum Industry Energy Footprint, http://www1.eere.energy.gov/industry/energy_systems/pdfs/aluminum_footprint.pdf
- ³ http://www1.eere.energy.gov/industry/bestpractices/pdfs/em_proheat_seven.pdf
- ⁴ IAC Industrial Assessments. DOE. http://iac.rutgers.edu/database/findassessment.php?ID=BD0333
- ⁵ IAC Industrial Assessments. DOE. http://iac.rutgers.edu/database/findassessment.php?ID=LL0192
- ⁶ IAC Industrial Assessments. DOE. http://iac.rutgers.edu/database/findassessment.php?ID=UD0766
- ⁷ IAC Industrial Assessments. DOE. http://iac.rutgers.edu/database/findassessment.php?ID=GT0815
- 8 IAC Industrial Assessments. DOE. http://iac.rutgers.edu/database/findassessment.php?ID=WV0318
- IAC Industrial Assessments. DOE. http://iac.rutgers.edu/database/findassessment.php?ID=UM0338
 IAC Industrial Assessments. DOE. http://iac.rutgers.edu/database/findassessment.php?ID=TA0126
- IAC Industrial Assessments, DOE, http://iac.rutgers.edu/database/findassessment.php?ID=IA0120
 IAC Industrial Assessments, DOE, http://iac.rutgers.edu/database/findassessment.php?ID=IA0434

MnTAP is a non-regulatory program in the School of Public Health at the University of Minnesota and is funded by the Minnesota Pollution Control Agency. The University of Minnesota is an equal opportunity educator and employer. © 2010 MnTAP. Reprint only with permission from MnTAP. Available in alternative formats upon request. 🏵 Printed on recycled paper containing 100% post-consumer waste.

MnTAP • 200 Oak Street SE, Suite 350 • Minneapolis, Minnesota 55455-2008 612.624.1300 • 800.247.0015 (Minnesota only) • FAX 612.624.3370 • www.mntap.umn.edu


Metal Can Manufacturing

Sub-sector Description

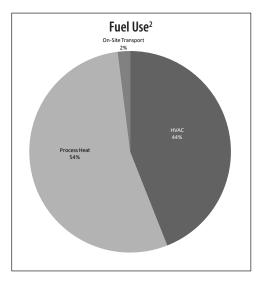

This sub-sector includes establishments primarily engaged in manufacturing metal cans, lids, and ends.

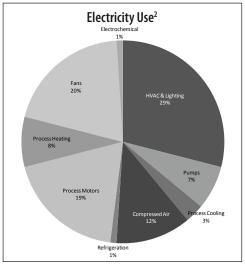
Facility Type	SIC	NAICS	
Metal can manufacturing	3411	332431	

Process Information

Energy Use¹

Benchmarks


Thermal and electrical benchmarks were unable to be reliably derived from facility-specific energy use, sales, employee numbers, and area data. For more information about the benchmarking study that MnTAP conducted and how to determine if your facility may have energy efficiency opportunities remaining, view the report Web pages at http://www.mntap.umn.edu/resources/DOC/index.html.


Savings Potential

Opportunities and technologies for energy conservation were identified for facilities within this sub-sector. Industry case studies and reports of implementation were used to determine what opportunities may be available and achievable savings from those opportunities. However, additional energy conservation measures may apply to your facility. The tables on Page 2 of this summary reflect a number of energy conservation measures available for this sub-sector.

Estimated Fuel Savings:	25%
Estimated Electric Savings:	11%

Energy Use Footprints

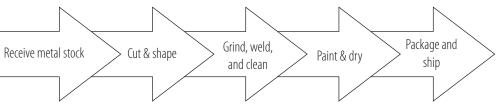
Improvement / Opportunity	Estimated Payback	Reported Savings	Overall Savings
Heat Recovery			
Recover heat from compressed air system ³	4 years	7-20%	
Process Heat System Optimization ⁴			
Boiler O ₂ tuning ⁵	< 2 years	3-5%	
Heat recovery of flue gas to preheat combustion air or heat secondary operations ⁶	5 years	10-25%	
Improve process measurements, control, and calibration ⁶	3-4 years	5-10%]
Facility HVAC Improvements			
Reduce make-up air ⁷	2 years	10%	
Use efficient building insulation ⁷	2 years	14%	
Use radiant heat for spot heating work areas ⁸	< 1 year	5%	
Replace inefficient gas-fired HVAC units ⁹	> 3 years	3%	
TOTAL FUEL SAVINGS ESTIMATE			25%

Electric Savings Estimate and Opportunities

Improvement / Opportunity	Estimated Payback	Reported Savings	Overall Savings
Process Improvements			
HVAC improvements ^{9,10}		3-8%]
Pump and fan sizing optimization		25-30%	
Compressed air evaluation ^{4,11}		5-9%]
Motor load reduction ¹²		4%	
Efficient motors and lighting ^{11,12}		2-3%	
Welding control ¹³⁻¹⁸		20%]
Process heat system optimization ⁶		2-25%	
TOTAL ELECTRIC SAVINGS ESTIMATE			11%

References

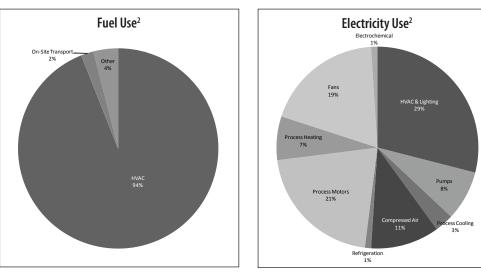
- IAC Industrial Assessments. DOE. http://iac.rutgers.edu/database/assessments.php
- C. Galitsky and E. Worrell. Energy Efficiency Improvement and Cost Savings Opportunities for the Vehicle Assembly Industry. Lawrence Berkley National Laboratory, January 2003.
- IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=OR0182
- 4 IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=WV0359
- ⁵ IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=OR0598
- 6 http://www1.eere.energy.gov/industry/bestpractices/pdfs/em_proheat_seven.pdf
- IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=OR0007
- IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=DS0010 9
- IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=C00595
- ¹⁰ IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=C00598
- ¹¹ IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=UW0009
- ¹² IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=UF0112
- ¹³ http://www.nema.org/energy/miller-inverter.html
- ¹⁴ http://findarticles.com/p/articles/mi_m0BFE/is_4_47/ai_n27645182
- ¹⁵ http://www.americanmachinist.com/304/Issue/Article/False/9124/Issue
- ¹⁶ http://adsabs.harvard.edu/abs/1980STIN...8119404T
- ¹⁷ http://www.osti.gov/bridge/servlets/purl/882565-ao9Lab/882565.PDF
- 18 http://www.p2pays.org/ref/08/07503.pdf

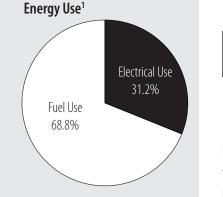

Structural Metal Products

Sub-sector Description

Facilities in this sub-sector are primarily engaged in manufacturing prefabricated metal buildings, panels and sections; structural metal products; and/or metal plate work products.

Facility Type	SIC	NAICS	Facility Type	SIC	NAICS
Office and store fixtures	2542	337215	Concrete reinforcing stock	3449	332312
Rolled steel shape mfg	3312	331221	Small arms ammunition mfg	3482	332992
Fabricated structural metal	3441	332312	Ordnance systems manufacturing	3489	332995
Door systems and screens	3442	336322	Industrial scale equipment	3596	333997
Heat exchangers and tanks	3443	332410	Amusement park equipment	3599	333319
Ornamental ironwork	3446	332323	Boat and lighthouse construction	3731	332312


Process Information



Benchmarks

Thermal and electrical benchmarks were unable to be reliably derived from facility-specific energy use, sales, employee numbers, and area data. For more information about the benchmarking study that MnTAP conducted and how to determine if your facility may have energy efficiency opportunities remaining, view the report Web pages at http://www.mntap.umn.edu/resources/DOC/index.html.

Energy Use Footprints

Savings Potential

Opportunities and technologies for energy conservation were identified for facilities within this sub-sector. Industry case studies and reports of implementation were used to determine what opportunities may be available and achievable savings from those opportunities. However, additional energy conservation measures may apply to your facility. The tables on Page 2 of this summary reflect a number of energy conservation measures available for this sub-sector.

Estimated Fuel Savings:	15%
Estimated Electric Savings:	14%

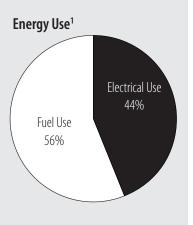
Minnesota Technical Assistance Program

Improvement / Opportunity	Estimated Payback	Reported Savings	Overall Savings
Heat Recovery ³			
Recover heat from hot wastewater and water heaters ⁴	4 years	5%	
Recover heat from compressed air system ⁵	4 years	3-21%	
Recover heat from refrigeration condensers ⁶	4 years	3%	
Recuperate heat from melt furnaces ⁷	2 years	12-15%]
Process Heat System Optimization			
Pre-form process heat optimization ³		2-25%	
Facility HVAC Improvements			
Reduce make-up air ⁸	2 years	5-18%	
Use efficient building insulation ⁹	2 years	6-8%	
Destratify air with circulation fans ⁹	2 years	4%	
Use radiant heat for spot heating parts ⁵	< 1 year	1%	
TOTAL FUEL SAVINGS ESTIMATE			15%

Electric Savings Estimate and Opportunities

Improvement / Opportunity	Estimated Payback	Reported Savings	Overall Savings
Process Improvements			
HVAC improvements ^{10,11}		13-22%	
Pump and fan sizing optimization		25-30%]
Compressed air evaluation ^{12,13}		8-12%	
Motor load reduction ^{14,15}		4-5%]
Efficient motors and lighting ^{10,16}		12-20%]
Welding control ¹⁷⁻²²		20%	
TOTAL ELECTRIC SAVINGS ESTIMATE			14%

References

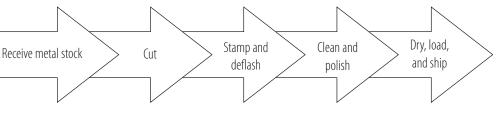

- ¹ IAC Industrial Assessments. DOE. http://iac.rutgers.edu/database/assessments.php
- ² C. Galitsky and E. Worrell. Energy Efficiency Improvement and Cost Savings Opportunities for the Vehicle Assembly Industry. Lawrence Berkley National Laboratory, January 2003.
- ³ http://www1.eere.energy.gov/industry/bestpractices/pdfs/em_proheat_seven.pdf
- ⁴ IAC Industrial Assessments. DOE. http://iac.rutgers.edu/database/findassessment.php?ID=WV0225
- ⁵ IAC Industrial Assessments. DOE. http://iac.rutgers.edu/database/findassessment.php?ID=BD0287
- ⁶ IAC Industrial Assessments. DOE. http://iac.rutgers.edu/database/findassessment.php?ID=IA0394
- ⁷ Trade publications featuring recuperator manufacturers (i.e. Encon, First Thermal, North American Manufacturing Company)
- ⁸ IAC Industrial Assessments. DOE. http://iac.rutgers.edu/database/findassessment.php?ID=WI0293
- ⁹ IAC Industrial Assessments. DOE. http://iac.rutgers.edu/database/findassessment.php?ID=SU0255
- IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=AM0546

- ¹¹ IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=OK0744
- ¹² IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=UM0251
- ¹³ IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=RU0110
- ¹⁴ IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=OK043
- ¹⁵ IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=UF0089
- ¹⁶ IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=IC0005
- 17 http://www.nema.org/energy/miller-inverter.html
 - ¹⁸ http://findarticles.com/p/articles/mi_m0BFE/is_4_47/ai_n27645182
 - ¹⁹ http://www.americanmachinist.com/304/Issue/Article/False/9124/Issue
 - ²⁰ http://adsabs.harvard.edu/abs/1980STIN...8119404T
 - ²¹ http://www.osti.gov/bridge/servlets/purl/882565-ao9Lab/882565.PDF
 - ²² http://www.p2pays.org/ref/08/07503.pdf

Stamping & Forging Operations

Sub-sector Description

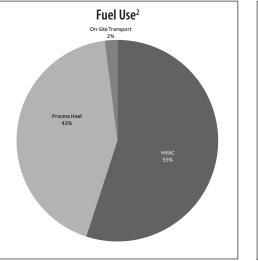
Facilities in this sub-sector manufacture forgings from purchased metals, metal custom roll forming products, metal stamped and spun products, and/or powder metallurgy products. Metal forging, metal stamping, and metal spun products facilities may perform surface finishing operations, such as cleaning and deburring, on the products they manufacture.

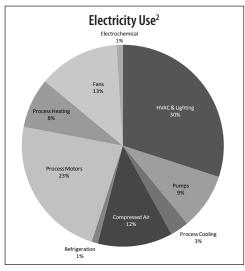

Savings Potential

Opportunities and technologies for energy conservation were identified for facilities within this sub-sector. Industry case studies and reports of implementation were used to determine what opportunities may be available and achievable savings from those opportunities. However, additional energy conservation measures may apply to your facility. The tables on Page 2 of this summary reflect a number of energy conservation measures available for this sub-sector.

Estimated Electric Savings: 15%

Facility Type	SIC	NAICS	Facility Type	SIC	NAICS
Forging and stamping	3321	332116	Arch. & structural metals mfg	3323	332323
Cutlery and hand tool mfg	3322	332211	Railroad rolling stock mfg	3365	336510
Gardening and hand tools	3423	332212	Hardware furnishings	3429	332510
Automotive stampings	3465	336370	All-trade metal stampings	3469	332116
Novelty and giftware	3499	332999			


Process Information



Benchmarks

Thermal and electrical benchmarks were unable to be reliably derived from facility-specific energy use, sales, employee numbers, and area data. For more information about the benchmarking study that MnTAP conducted and how to determine if your facility may have energy efficiency opportunities remaining, view the report Web pages at http://www.mntap.umn.edu/resources/DOC/index.html.

Energy Use Footprints

Minnesota Technical Assistance Program

MnTAP researched and analyzed this sub-sector for an electric utility. Therefore, fuel savings opportunities and an estimate of potential savings were not identified as part of MnTAP's industrial energy efficiency study.

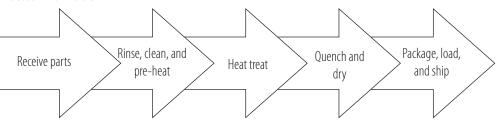
Electric Savings Estimate and Opportunities

Improvement / Opportunity	Estimated Payback	Reported Savings	Overall Savings
Process Improvements and Optimization			
Reduce compressed air pressure to minimum required and repair leaks ³	< 1 year	2-6%	
Update compressor controls and intake location ⁴	< 1 year	3.4%	
Replace motors with soft-start or ASD supplies ⁵	2 years	1.5-30%	
Properly size motors and pumps, select efficient replacements ⁶	3 years	2-30%	
Turn off equipment when not in use or reduce power consumption in stand-by ⁷	< 1 year	1.7%	
Optimize plant power factor, install power factor correction devices ⁸	1-2 years	0.02%	
Utilize energy-efficient belts ⁹	< 1 year	0-7.7%	
Facility HVAC Improvements			
Facility HVAC improvements ²	< 1 year	2-14%	1
Lighting improvements ¹⁰	2 years	3-20%	1
TOTAL ELECTRICAL SAVINGS ESTIMATE			15%

References

- ¹ IAC Industrial Assessments. DOE. http://iac.rutgers.edu/database/assessments.php
- ² C. Galitsky and E. Worrell. Energy Efficiency Improvement and Cost Savings Opportunities for the Vehicle Assembly Industry. Lawrence Berkley National Laboratory, January 2003.
- ³ IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=TA0067
- ⁴ IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=SU0228
- ⁵ IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=SD0394
- ⁶ IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=OK0662
- 7 IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=SF0304
- ⁸ IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=UU0050
- ⁹ IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=SU0264

¹⁰ Reducing Industrial Electricity Costs – An Automotive Case Study, A. Price and MH Ross, The Electricity Journal, July 1989: 40–51.


Heat Treating

Sub-sector Description

Facilities that are primarily engaged in heat treating, such as annealing, hardening, and tempering metals and metal products for the trade are included in this sub-sector. Some facilities specialize in heat treating as their sole function, while others heat treat metal as part of larger operations: metal casting or metal fabrication.

Facility Type	SIC	NAICS	
Metal/steel heat treating	3398	332811	

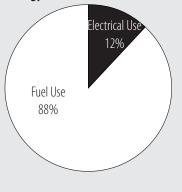
Process Information

Energy Use¹

Savings Potential

Opportunities and technologies for

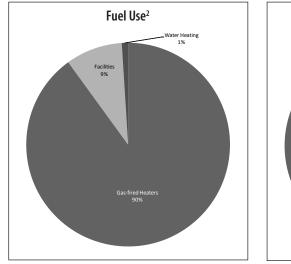
energy conservation were identified

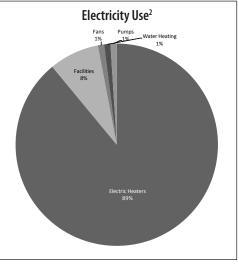

for facilities within this sub-sector.

Industry case studies and reports

of implementation were used to determine what opportunities may be available and achievable savings from those opportunities. However, additional energy conservation measures may apply to your facility. The tables on Page 2 of this summary reflect a number of energy conservation measures available for this sub-sector.

Estimated Fuel Savings:


Estimated Electric Savings:



Benchmarks

Thermal and electrical benchmarks were unable to be reliably derived from facility-specific energy use, sales, employee numbers, and area data. For more information about the benchmarking study that MnTAP conducted and how to determine if your facility may have energy efficiency opportunities remaining, view the report Web pages at http://www.mntap.umn.edu/resources/DOC/index.html.

Energy Use Footprints

12%

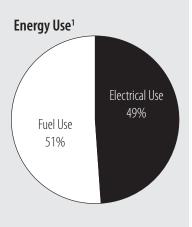
22%

Minnesota Technical Assistance Program UNIVERSITY OF MINNESOTA

Improvement / Opportunity	Estimated Payback	Reported Savings	Overall Savings
Process Improvements			
Use waste heat from hot flue gases to preheat combustion air	1-2 years	14%	1
Reduce combustion air flow to optimum	< 1 year	1-2%	
Insulate bare equipment	< 1 year	1-2%]
Increase insulation thickness	< 1 year	0-1%	
Improve air circulation with destratification fans / other methods	1-2 years	5-10%	
TOTAL FUEL SAVINGS ESTIMATE			12%

Electric Savings Estimate and Opportunities

Improvement / Opportunity		oorted Overall vings Savings
Process Improvements and Optimization		
Reduce compressed air pressure to minimum required and repair leaks ³	< 1 year 4	1.3%
Update compressor controls and intake location ⁴	< 1 year 3	3.4%
Replace motors with soft-start or ASD supplies ⁵	2 years 1	1.5%
Properly size motors and pumps, select efficient replacements ⁶	3 years 1	1.9%
Utilize energy-efficient belts ⁷	< 1 year C).9%
Turn off equipment when not in use or reduce power consumption in stand-by ⁸	< 1 year 1	1.7%
Optimize plant power factor, install power factor correction devices ⁹	1-2 years 0.	.02%
Process heat optimization and process equipment insulation ¹⁰	3 years 10	0.0%
Facility HVAC Improvements		
Facility HVAC improvements ¹¹	< 1 year 1	1.0%
Lighting improvements ¹²	2 years 2	2.6%
TOTAL ELECTRICAL SAVINGS ESTIMATE		22%

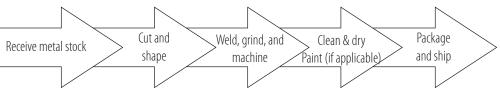

References

- IAC Industrial Assessments. DOE. http://iac.rutgers.edu/database/assessments.php
- ² Journal of Heat Treating, 1989, SOderstrom and Lewald, http://www.springerlink.com/content/ h9266765hn831827/fulltext.pdf.
- ³ IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=TA0067
- ⁴ IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=SU0228
- IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=SD0394
 IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=OK0662
- ⁷ IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=SU0264
- ⁸ IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=SF0304
- ⁹ IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=UU0050
- ¹⁰ DOE Best Practices; http://www1.eere.energy.gov/industry/bestpractices/pdfs/em_proheat_seven.pdf
- ¹¹ IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=WI0504
- ¹² IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=IC0026

Machine Shops

Sub-sector Description

This sub-sector includes facilities that are engaged in machining metal and plastic parts and parts of other composite materials on a job or order basis. Generally machine shop jobs are low volume using machine tools such as lathes (including computer numerically controlled); automatic screw machines; and machines for boring, grinding, and milling.

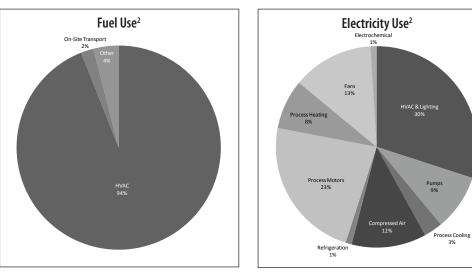

Savings Potential

Opportunities and technologies for energy conservation were identified for facilities within this sub-sector. Industry case studies and reports of implementation were used to determine what opportunities may be available and achievable savings from those opportunities. However, additional energy conservation measures may apply to your facility. The tables on Page 2 of this summary reflect a number of energy conservation measures available for this sub-sector.

Estimated Fuel Savings:	15%
Estimated Electric Savings:	9 %

Facility Type	SIC	NAICS	Facility Type	SIC	NAICS
Machine jobs, general	3544	332710	Spring and wire product mfg	3495	332611
Screw machining	3452	332722	Fabricated wire product mfg	3496	332618
Turned product and screw mfg	3451	332721			

Process Information



Benchmarks

The following thermal and/or electrical benchmarks were derived from facility-specific energy use, employee numbers, and area data for the facilities that MnTAP analyzed. These benchmarks can be used to predict how efficient your facility is in comparison to peer facilities. If your facility's energy use is less efficient than your peers, there may be energy conservation opportunities available. The benchmarks included have been tested for reliability; however, they should be used with some caution. For more information on the benchmarking study including how to use the benchmarks, view the report Web pages at http://www.mntap.umn.edu/resources/DOC/index.html.

	Most efficient 25%	More efficient 25%	Less efficient 25%	Least efficient 25%
kWh/square feet	< 14	14 - 22	22 - 34	> 34
kWh/employee	< 6,090	6,090 - 11,242	11,242 - 20,752	> 20,752
therms/square feet	< 0.15	0.15 - 0.27	0.27 - 0.47	> 0.47

Energy Use Footprints

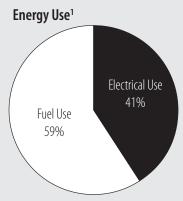
Minnesota Technical Assistance Program

Improvement / Opportunity	Estimated Payback	Reported Savings	Overall Savings
Process Improvement and Optimization			
Process heat system optimization ³			1
Boiler O ₂ tuning ⁴	< 2 years	1%]
Place insulating materials around ovens and hot water heaters/boilers ⁵	2 years	6%]
Heat recovery of flue gas to preheat combustion air or heat secondary operations ⁶	5 years	2%	
Recover heat from process equipment ⁷	2 years	2%	
Recover heat from compressed air system ⁸	4 years	2%	
Facility HVAC Improvements			
Reduce make-up air ⁹	2 years	4%	1
Use efficient building insulation ¹⁰	2 years	4%	1
Use radiant heating for spot area heating ¹¹	< 1 year	6%]
TOTAL FUEL SAVINGS ESTIMATE			15%

Electric Savings Estimate and Opportunities

Improvement / Opportunity	Estimated Payback	Reported Savings	Overall Savings
Process Improvements and Optimization			
Reduce compressed air pressure to minimum required and repair leaks ¹²	< 1 year	4-9%	
Update compressor controls and intake location ¹³	< 1 year	3.4%]
Replace motors with soft-start or ASD supplies ¹⁴	2 years	1.5%	
Properly size motors and pumps, select efficient replacements ¹⁵	3 years	1-4%	
Turn off equipment when not in use or reduce power consumption in stand-by ¹⁶	< 1 year	1.7%]
Optimize plant power factor, install power factor correction devices ¹⁷	1–2 years	0.02%	
Fan and paint ventilation optimization and modification ²	2-3 years	5.0%	
Welding control and inverter technologies ¹⁸	5 years	5.0%	
Facility HVAC Improvements			
Facility HVAC improvements ²	< 1 year	1-2%	1
Lighting improvements ¹⁹	2 years	3-6%]
TOTAL ELECTRICAL SAVINGS ESTIMATE			9 %

References

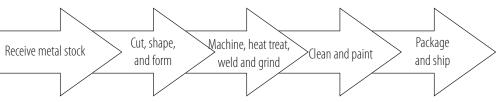

- ¹ IAC Industrial Assessments. DOE. http://iac.rutgers.edu/database/assessments.php
- ² C. Galitsky and E. Worrell. Energy Efficiency Improvement and Cost Savings Opportunities for the Vehicle Assembly Industry. Lawrence Berkley National Laboratory, January 2003.
- ³ http://www1.eere.energy.gov/industry/bestpractices/pdfs/em_proheat_seven.pdf
- ⁴ IAC Industrial Assessments. DOE. http://iac.rutgers.edu/database/findassessment.php?ID=M00112
- ⁵ IAC Industrial Assessments. DOE. http://iac.rutgers.edu/database/findassessment.php?ID=OK0239
- ⁶ IAC Industrial Assessments. DOE. http://iac.rutgers.edu/database/findassessment.php?ID=WV0234
- 7 IAC Industrial Assessments. DOE. http://iac.rutgers.edu/database/findassessment.php?ID=IA0032
- ⁸ IAC Industrial Assessments. DOE. http://iac.rutgers.edu/database/findassessment.php?ID=IA130
- IAC Industrial Assessments. DOE. http://iac.rutgers.edu/database/findassessment.php?ID=WI0350
 IAC Industrial Assessments. DOE. http://iac.rutgers.edu/database/findassessment.php?ID=ME0277

- ¹¹ IAC Industrial Assessments. DOE. http://iac.rutgers.edu/database/findassessment.php?ID=BD0205
- ¹² IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=TA0067
- ¹³ IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=SU0228
- ¹⁴ IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=SD0394
- ¹⁵ IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=OK0662
- ¹⁶ IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=SF0304
- ¹⁷ IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=UU0050
- ¹⁸ http://www.americanmachinist.com/304/Issue/Article/False/9124/Issue
- ¹⁹ A. Price and M.H. Ross. Reducing Industrial Electricity Costs An Automotive Case Study. The Electricity Journal, July 1989: 40-51.

Industrial Equipment Manufacturing

Sub-sector Description

Facilities in this sub-sector create end products that apply mechanical force, for example, the application of gears and levers, to perform work. Some important processes for the manufacture of machinery are forging, stamping, bending, forming, and machining that are used to shape individual pieces of metal. Processes, such as welding and assembling are used to join separate parts together.

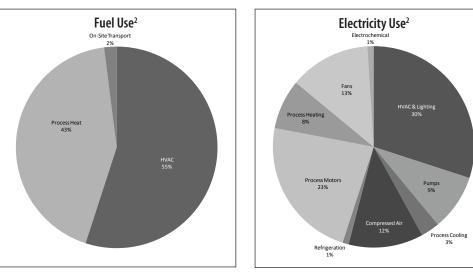

Savings Potential

Opportunities and technologies for energy conservation were identified for facilities within this sub-sector. Industry case studies and reports of implementation were used to determine what opportunities may be available and achievable savings from those opportunities. However, additional energy conservation measures may apply to your facility. The tables on Page 2 of this summary reflect a number of energy conservation measures available for this sub-sector.

Estimated Fuel Savings:	21%
Estimated Electric Savings:	13%

Facility Type	SIC	NAICS	Facility Type	SIC	NAICS
Heat exchanger/boiler mfg	3559	332410	Motors, pump, and fan mfg	3621	333612
Metal working machinery	3549	333518	General machinery mfg	3599	333120
Industrial machinery mfg	3523	333120			

Process Information



Benchmarks

The following thermal and/or electrical benchmarks were derived from facility-specific energy use, employee numbers, and area data for the facilities that MnTAP analyzed. These benchmarks can be used to predict how efficient your facility is in comparison to peer facilities. If your facility's energy use is less efficient than your peers, there may be energy conservation opportunities available. The benchmarks included have been tested for reliability; however, they should be used with some caution. For more information on the benchmarking study including how to use the benchmarks, view the report Web pages at http://www.mntap.umn.edu/resources/DOC/index.html.

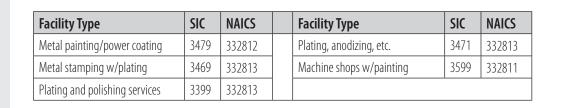
	Most efficient 25%	More efficient 25%	Less efficient 25%	Least efficient 25%
kWh/employee	< 2,940	2,940 - 5,577	5,577 - 10,577	> 10,577
therms/employee	< 174	174 - 337	337 - 653	> 653

Energy Use Footprints

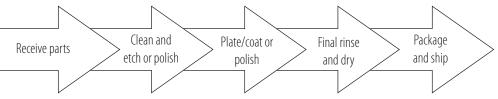
Improvement / Opportunity	Estimated Payback	Reported Savings	Overall Savings
Process Improvement and Optimization			
Process heat system optimization ³			
Boiler O ₂ tuning	< 2 years	5%	
Place insulating materials around ovens, seal ovens, cover openings	2 years	2%]
Improve process measurements, control, and calibration	2 years	5%	
Heat recovery of flue gas to preheat combustion air or heat secondary operations	5 years	10%	
Use radiant heat for spot heating parts ⁴	> 5 years	1%]
Modify processes to reduce cure times and overheating	2–3 years	5%]
Facility HVAC Improvements			
Reduce make-up air, push/pull ventilation ⁵	2 years	5%	
Use efficient building insulation ⁶	> 3 years	8%	1
Use radiant heating for spot area heating ⁷	< 1 year	5%	1
TOTAL FUEL SAVINGS ESTIMATE			21%

Electric Savings Estimate and Opportunities

Improvement / Opportunity	Estimated Payback	Reported Savings	Overall Savings
Process Improvements and Optimization			
Reduce compressed air pressure and repair leaks ⁸	< 1 year	4-9%	1
Update compressor controls and intake location ⁹	< 1 year	3.4%]
Replace motors with soft-start or ASD supplies ¹⁰	2 years	1.5-4%]
Properly size motors and pumps, efficient replacements ¹¹	3 years	1.9%	1
Utilize energy-efficient belts ¹²	< 1 year	0.9%]
Turn off equipment when not in use or reduce power consumption in stand-by ¹³	< 1 year	1.7%]
Optimize plant power factor, install correction devices ¹⁴	2 years	0.02%]
Welding control and inverter technologies ¹⁵	5 years	2-5%]
Facility HVAC Improvements]
Facility HVAC improvements ¹⁶	< 1 year	1-11%	1
Lighting improvements ¹⁷	2 years	1-6%	1
TOTAL ELECTRICAL SAVINGS ESTIMATE			13%


References

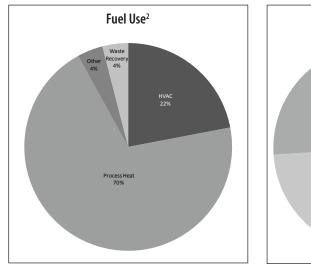
- ¹ IAC Industrial Assessments. DOE. http://iac.rutgers.edu/database/assessments.php
- ² DOE Heavy Machinery Manufacturing Footprint. http:///www1.eere.energy.gov/industry/energy_systems/pdfs/ machinery_footprint.pdf
- ³ http://www1.eere.energy.gov/industry/bestpractices/pdfs/em_proheat_seven.pdf
- ⁴ IAC Industrial Assessments. DOE. http://iac.rutgers.edu/database/findassessment.php?ID=BD0287
- IAC Industrial Assessments. DOE. http://iac.rutgers.edu/database/findassessment.php?ID=MA0551
 IAC Industrial Assessments. DOE. http://iac.rutgers.edu/database/findassessment.php?ID=UD0280
- AC industrial Assessments. DOE: http://iac.rutgers.edu/database/findassessment.php?ID=UU0058
 IAC industrial Assessments. DOE: http://iac.rutgers.edu/database/findassessment.php?ID=UU0058
- ⁸ IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=TA0067
- IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=SU0228
 IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=SD0394
- IAC Industrial Assessments; DUE, http://iac.rutgers.edu/database/findassessment.pnp?ID=5D0594
 IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=0K0662
- IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=SU0264
 IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=SU0264
- ¹³ IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=SF0304
- ¹⁴ IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=UU0050
- ¹⁵ http://www.americanmachinist.com/304/Issue/Article/False/9124/Issue
- ¹⁶ IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=WI0504
- 17 IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=UM0238

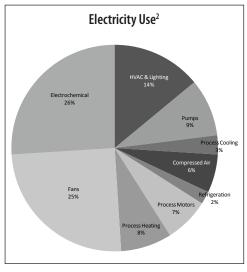

Plating, Polishing, Coating, and Finishing

Sub-sector Description

This sub-sector includes facilities engaged in engraving, chasing, or etching metals and metal products; electroplating, plating, anodizing, coloring, and finishing metals and metal products; and providing other metal surfacing services for the trade. Facilities in this industry generally coat, engrave, and metal formed products fabricated elsewhere.

Process Information




Benchmarks

The following thermal and/or electrical benchmarks were derived from facility-specific energy use, employee numbers, and area data for the facilities that MnTAP analyzed. These benchmarks can be used to predict how efficient your facility is in comparison to peer facilities. If your facility's energy use is less efficient than your peers, there may be energy conservation opportunities available. The benchmarks included have been tested for reliability; however, they should be used with some caution. For more information on the benchmarking study including how to use the benchmarks, view the report Web pages at http://www.mntap.umn.edu/resources/DOC/index.html.

	Most efficient 25%	More efficient 25%	Less efficient 25%	Least efficient 25%
kWh/square feet	< 21	21 - 31	31 - 47	> 47
kWh/employee	< 16,390	16,390 - 25,656	25,656 - 40,160	> 40,160
therms/square feet	< 1.17	1.17 - 2.53	2.53 - 5.47	> 5.47

Energy Use Footprints

Energy Use¹ Electrical Use 26% Fuel Use 74%

Savings Potential

Opportunities and technologies for energy conservation were identified for facilities within this sub-sector. Industry case studies and reports of implementation were used to determine what opportunities may be available and achievable savings from those opportunities. However, additional energy conservation measures may apply to your facility. The tables on Page 2 of this summary reflect a number of energy conservation measures available for this sub-sector.

Estimated Fuel Savings:	25%
Estimated Electric Savings:	17%

Minnesota Technical Assistance Program

UNIVERSITY OF MINNESOTA

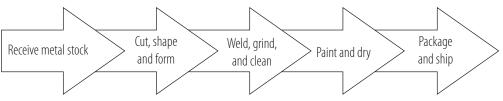
Improvement / Opportunity	Estimated Payback	Reported Savings	Overall Savings
Process Improvement and Optimization			
Process heat system optimization ³			
Boiler O₂ tuning ⁴	< 2 years	5-25%	
Place insulating materials around ovens and hot water heaters/boilers ⁵	2 years	6%	
Heat recovery of flue gas to preheat combustion air or heat secondary operations ⁶	5 years	10-25%	
Recovery heat from process equipment ⁷	2 years	2%]
Recover heat from compressed air system ⁸	4 years	2%	
Use adequate insulation and maintain	2 years	2-15%	
Calibrate and maintain process sensors and control	2 years	5-10%	
Heat transfer improvement allowing better convection/radiation	> 3 years	5-15%	
Modify processes to reduce soak times and overheating	2-3 years	5-10%	
Facility HVAC Improvements			
Reduce make-up air, push/pull ventilation ³	2 years	5%	
Use efficient building insulation ^₄	> 3 years	8%	
Use radiant heating for spot area heating ⁵	< 1 year	5%	
TOTAL FUEL SAVINGS ESTIMATE			25%

Electric Savings Estimate and Opportunities

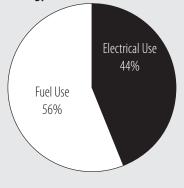
Improvement / Opportunity	Estimated Payback	Reported Savings	Overall Savings
Process Improvements and Optimization			
Electrochemical process efficiency ²	> 3 years	5%	-
Pump optimization ¹²	2 years	5%	
Process motor optimization and load reduction ¹³	< 2 years	4%	
Reduce ventilation ¹⁴	2.5 years	2%	
Compressed air improvements, cold air intake, fix leaks and controls ¹⁵	< 1 year	9%	
Facility HVAC Improvements			
Facility HVAC improvements ¹⁶	< 1 year	1%	
Lighting improvements ¹⁷	2 years	5%	
TOTAL ELECTRICAL SAVINGS ESTIMATE			17%

References

- ¹ IAC Industrial Assessments. DOE. http://iac.rutgers.edu/database/assessments.php
- ² Energy Center of Wisconsin Publication 319–2. Metal Finishers Technical Supplement. 2006.
- ³ http://www1.eere.energy.gov/industry/bestpractices/pdfs/em_proheat_seven.pdf
 ⁴ UC Industrial Assessments, DOE http://ac.utagr.edu/database/findassessment.pbp2II
- IAC Industrial Assessments. DOE. http://iac.rutgers.edu/database/findassessment.php?ID=M00112
 IAC Industrial Assessments. DOE. http://iac.rutgers.edu/database/findassessment.php?ID=OK0239
- IAC Industrial Assessments. DOE. http://iac.rutgers.edu/database/findassessment.php?ID=WV0234
 IAC Industrial Assessments. DOE. http://iac.rutgers.edu/database/findassessment.php?ID=WV0234
- ⁷ IAC Industrial Assessments. DOE. http://iac.rutgers.edu/database/findassessment.php?ID=IA0032
- ⁸ IAC Industrial Assessments. DOE. http://iac.rutgers.edu/database/findassessment.php?ID=IA130
- IAC Industrial Assessments. DOE. http://iac.rutgers.edu/database/findassessment.php?ID=WI0350
- IAC Industrial Assessments. DOE. http://iac.rutgers.edu/database/findassessment.php?ID=ME0277
 IAC Industrial Assessments. DOE. http://iac.rutgers.edu/database/findassessment.php?ID=BD0205
- IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/indussessment.php?ID=5D0205
 IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=5D0243
- ¹³ IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/inidassessment.php?ID=JO0243
 ¹³ IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=IC0118
- ¹⁴ IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=IC0009
- IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=MA0548
- ¹⁶ IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=LM0123
- 17 IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=IC0026


Sheet Metal Fabrication

Sub-sector Description


This sub-sector includes facilities that manufacture a variety of products from sheet metal. These products may include metal window frames, metal doors, sheet metal work, and ornamental and architectural metal products.

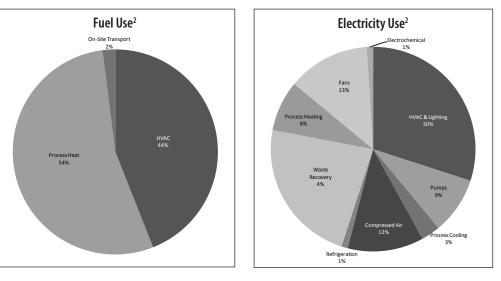
Facility Type	SIC	NAICS	Facility Type	SIC	NAICS
Sheet metal work manufacturing	3444	332322	Ornamental metal work mfg	3599	322323
Custom sheet metal fab.	3469	332322			

Process Information

Energy Use¹

Savings Potential

Opportunities and technologies for energy conservation were identified for facilities within this sub-sector. Industry case studies and reports of implementation were used to determine what opportunities may be available and achievable savings from those opportunities. However, additional energy conservation measures may apply to your facility. The tables on Page 2 of this summary reflect a number of energy conservation measures available for this sub-sector.


Estimated Fuel Savings:	24%
Estimated Electric Savings:	15%

Benchmarks

The following thermal and/or electrical benchmarks were derived from facility-specific energy use, employee numbers, and area data for the facilities that MnTAP analyzed. These benchmarks can be used to predict how efficient your facility is in comparison to peer facilities. If your facility's energy use is less efficient than your peers, there may be energy conservation opportunities available. The benchmarks included have been tested for reliability; however, they should be used with some caution. For more information on the benchmarking study including how to use the benchmarks, view the report Web pages at http://www.mntap.umn.edu/resources/DOC/index.html.

	Most efficient 25%	More efficient 25%	Less efficient 25%	Least efficient 25%
kWh/square feet	< 8	8 - 16	16 - 32	> 32
kWh/employee	< 5,765	5,765 - 11,345	11,345 - 22,326	> 22,326

Energy Use Footprints

Improvement / Opportunity	Estimated Payback	Reported Savings	Overall Savings
Process Improvement and Optimization			
Process heat system optimization ³			
Boiler O ₂ tuning	< 2 years	5-25%	
Place insulating materials around ovens, seal ovens, cover openings.	2 years	2-15%	
Heat recovery of flue gas to preheat combustion air or heat secondary operations	5 years	10-25%	
Improve process measurements, control, and calibration	3 years	5-10%	
Modify processes to reduce cure times and overheating	5 years	5-10%	
Facility HVAC Improvements			
Reduce make-up air ⁴	2 years	2%	
Use efficient building insulation ⁵	2 years	8%	
Install air curtains to direct oven heat in facility ⁶	< 1 year	5%	
TOTAL FUEL SAVINGS ESTIMATE			24%

Electric Savings Estimate and Opportunities

Improvement / Opportunity	Estimated Payback	Reported Savings	Overall Savings
Process Improvements and Optimization			
Fan and paint ventilation modifications ⁷	> 3 years	5%	
Reduce compressed air pressure to minimum required and repair leaks ⁸	< 1 year	4.3%	
Update compressor controls and intake location9	< 1 year	3.4%	
Properly size motors and pumps, select efficient replacements ¹⁰	3 years	1.9%	
Turn off equipment when not in use or reduce power consumption in stand-by ¹¹	< 1 year	1.7%	
Optimize plant power factor, install power factor correction devices ¹²	1-2 years	0.02%	
Welding control and inverter technologies ¹³	5 years	5.0%	
Facility HVAC Improvements			
Facility HVAC improvements ⁷	< 1 year	2.0%	1
Lighting improvements ¹⁴	2 years	3.0%]
TOTAL ELECTRICAL SAVINGS ESTIMATE			15%

References

- IAC Industrial Assessments. DOE. http://iac.rutgers.edu/database/assessments.php
- Energy Center of Wisconsin Publication 319-2. Metal Finishers Technical Supplement. 2006.
- http://www1.eere.energy.gov/industry/bestpractices/pdfs/em_proheat_seven.pdf
- 4 IAC Industrial Assessments. DOE. http://iac.rutgers.edu/database/findassessment.php?ID=WI0293 5
- IAC Industrial Assessments. DOE. http://iac.rutgers.edu/database/findassessment.php?ID=C00006
- IAC Industrial Assessments. DOE. http://iac.rutgers.edu/database/findassessment.php?ID=UU0058
- C. Galitsky and E. Worrell. "Energy Efficiency Improvements and Cost Savings Opportunities for the Vehicle Assembly Industry", Lawrence Berkley National Laboratory." January 2003.
- ⁸ IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=TA0067
- IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=SU0228
- ¹⁰ IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=OK0662
- ¹¹ IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=SF0304
- ¹² IAC Industrial Assessments; DOE, http://iac.rutgers.edu/database/findassessment.php?ID=UU0050
- ¹³ http://www.americanmachinist.com/304/lssue/Article/False/9124/lssue
- ¹⁴ A. Price and M.H. Ross. Reducing Industrial Electricity Costs An Automotive Case Study. The Electricity Journal, July 1989: 40-51.