Operating efficiently—energy conservation for small to medium wastewater treatment facilities

Minnesota Pollution Control Agency 79th Annual Wastewater Operations Conference

March 24th, 2016 Marriott Northwest, Brooklyn Park, Minnesota 7025 Northland Drive N, MN 55428

8:00 AM to 11:30 AM

Minnesota Pollution Control Agency

JenTech Inc.

3/24/2016

7

Electric Power Cost and Benchmarks

- Energy ≠ Power ≠ Electric cost
- Energy = Capacity to do work (kWh, ft-lb)
- Power = Work done per unit time (kW, hp)
- Cost = Expenditure required to obtain electricity
 - Cost = Money and other outlays (time, CO₂, labor, water)

Electric Power (Cost a	nd E	Bench	marks	
Determining Composi	ite ("aver	age")	power c	ost	
Fic	tional Sa	mple E	lectric E	Sill	
Charge	Usage		Rate	Cost of Total	
Service and Meter				\$500	5%
On-Peak Energy	41,000	kWh	\$0.08	\$3,280	30%
Off-Peak Energy	65,000	kWh	\$0.07	\$4,550	41%
Demand	280	kW	\$8	\$2,240	20%
Taxes			5%	\$528.50	5%
Total	106,000			\$11,099	
Composite Rate				0.1047 \$	6/kWh

- Integrated Approach Is Essential
- Process impacts must be discussed in ECM justification
- · Instrumentation may require upgrading
- Include SCADA and PLC requirements in cost estimates
- Accommodate current and near term loads (hydraulic and organic)
- Adjustability and flexibility are important (turndown)
- Many opportunities require no capital investment – Taking aeration tanks out of service, perform operations off-peak

- Examples:
- Reduce MLSS
- Match number of tanks in service to process needs
- Use equalization basins to limit loading variations to process – Influent and sidestream loads
- Flow pace RAS pumping
- · Reduce WAS pumping rate and waste on off-peak times
- Thicken WAS before digestion
- Decant digesters on off-peak times

25

Aeration Systems

- Process and aeration system limitations are often neglected in energy evaluations
 - Mixing limits in aeration basins
 - Can accomplish with intermittent aeration
 - Max flow for diffusers
 - Min flow for diffusers
 - Tanks must be protected from floating and freezing
 - O2 demand and OTE constantly vary
- Primary objective: supply O₂ needed to metabolize waste
- Secondary objective: Do it at the lowest possible energy cost

Operating efficiently - energy conservation for small to medium wastewater treatment facilities ©2016 JenTech Inc.

Operating efficiently - energy conservation for small to medium wastewater treatment facilities ©2016 JenTech Inc.

53

- It is the differential head across the pump that dictates power draw
- Power can be saved by raising wet well levels
- Example: for a typical 700 gpm pump (1 mgd) with power at \$0.11 per raising wet well level 1 foot will save almost \$200 per year
- Zero cost to implement

57

- Some application considerations for VFDs
 - Most utilities offer incentives for installation
 - Harmonics may be an issue work with your suppliers
 - Bearing fluting is a rare but severe problem
 - Good grounding and keeping power wiring short minimize problems
 - For positive displacement pumps and blowers constant torque rated VFDs are required
 - VFDs will affect standby generator sizing

Payback, Financing OptionYou can't just add:	S		
ECM	Sa	vings	
Better Diffusers	+	50%	
DO and Blower Control	s +	25%	
VFDs for Blowers	+	18%	
High Efficiency Motors	+	12%	
		105%	
			70

Payback, Financing Op	otions		
Proper technique:			
ECM	Savings	1-S	avings
Better Diffusers	50%	X	50%
DO and Blower Controls	25%	X	75%
VFDs for Blowers	18%	X	82%
High Efficiency Motors	12%	X	88%
Multiply the last columr	n: Result=New		
Power as Percentage of Original			27%
Sa	vings = 1-Resu	lt:	73%

Operating efficiently - energy conservation for small to medium wastewater treatment facilities ©2016 JenTech Inc.

