

# The Massachusetts Toxics Use Reduction Act (TURA): Services for Businesses and Communities

#### **Overview**

- The Basics: How TURA works
- Services provided by TURI, OTA and MassDEP
- Out of State Company Resources
  - Laboratory Testing
  - -Online Tools and Databases
  - Library
  - -TUR Planner Course
- Your questions
- Ice Breaker Activity

## Massachusetts Toxics Use Reduction Act (TURA)

- Helps Massachusetts companies and communities:
  - *Reduce the use of toxic chemicals* while
    promoting competitive
    advantage of
    Massachusetts
    businesses.



# **How TURA Works**

Users of large amounts of toxic chemicals must:

- Report toxics use
- Pay fees
  - Funds support services to industry & communities
- Plan toxics reduction





# **TUR Reporting**

- Annual reports on amounts used, wasted, shipped in product, released onsite, or shipped offsite as pollution
- Affects ≈ 500 companies employing 10 or more FTEs that also use above threshold amounts of one or more of ≈ 1000 TURA listed chemicals
- Makes companies aware of quantities they use and waste

# **TURA Structure: Implementing Agencies**



Massachusetts Department of Environmental Protection (MassDEP): planner certification, filings, enforcement, data analysis



Massachusetts Office of Technical Assistance and Technology (OTA): On-site, confidential technical assistance



Massachusetts Toxics Use Reduction Institute (TURI): Training, Grants, Research, Alternatives Assessment, Policy Analysis, Technical Support, Laboratory, Library

# **Referrals from OTA**



- Works primarily with industrial facilities
- Free & confidential technical assistance includes
  - Recommendations to enhance compliance
  - Implement pollution prevention options
- Pollution prevention recommendations from OTA can include:
  - Suggestions for toxics use minimization to increase efficiency
  - Solvent recycling or reuse options
  - Specific chemical or process alternatives recommended based on what has worked for other companies, similar applications
  - Suggestion to contact the TURI Cleaning Lab for further investigation to assess an alternative
- Following a referral to the Lab, OTA technical assistance providers can help companies implement the Lab's recommendation

### **Toxics Use Reduction Institute Laboratory**

- UMass Lowell (est. 1994)
- The laboratory works on such sectors as:
  - <u>Industry</u>
  - <u>Janitorial</u>
  - Households
  - Disinfection
- Learning Laboratory
  - 20-25 undergraduate students
  - 2-3 graduate students



# **How We Help Companies**

- Performance Testing (Low Cost or through Grants)
  - Site Visit
  - EHS Assessment
  - Hansen Solubility Testing (HSPIP)
  - Flexible Performance Testing
    - Customized evaluations
- EHS Assessment of Potential Alternatives
  - Pollution Prevention Options Analysis System (P2OASys)

# Ice Breaker (5-10 Minutes)

- Break into small groups (3-5 people)
  - Discussion:
    - Introductions
    - What do you hope to get out of this training?
    - Why do we clean?





# **Cleaning Solvents:** Why We Clean

# **Surface Cleaning**

- What "clean" means
  - Free from dirt, stain, or impurities
  - More simply, unsoiled
- Soils can be defined as
  - Extraneous or unwanted material deposited and/or attached to a surface
- Cleaning is the process of getting rid of these impurities

#### **Who Cleans**

 I guess a shorter question would be, who doesn't?

# **Company Types Using TCE**

| Companies                 | Total 47 |
|---------------------------|----------|
| Capacitor Manufacturer    | 2        |
| Plating & Metalworking    | 22       |
| Aircraft                  | 1        |
| Semiconductor/Electronics | 2        |
| General Mfr               | 14       |
| Jewelry                   | 4        |
| Tools                     | 1        |
| Wire & Cable              | 1        |

### What Has Been Cleaned

| Contaminants                | Tests Run | Specific Types |
|-----------------------------|-----------|----------------|
| Buffing/Polishing Compounds | 226       | 12             |
| Oil                         | 423       | 33             |
| Paints/Inks/Coatings        | 62        | 9              |
| Waxes                       | 15        | 9              |
| Other                       | 14        | 4              |

# Why Clean

- May be required to prepare the surfaces of parts prior to other manufacturing processes
  Welding, plating or painting
- May be performed for aesthetic reasons as an aid for marketing and sales
- Or it may be necessary to ensure that the finished product will perform without failure caused by contamination

#### **How to Clean**

- Cleaning systems depend on three actions
  - Mechanical
  - Thermal
  - Chemical
- Balancing act
  - With a good chemical cleaner, the mechanical and thermal requirements can be lowered
- Time

#### With What Shall I Clean It...

- Solvency can be defined as the ability to dissolve.
  - Water is considered to be the 'universal solvent'
    - Capable of dissolving many inorganic and some organic contaminants or soils
  - But not all soils readily dissolve in water alone,
    - Which is why additives were included to make the first soaps

# **Trouble with Cleaning**

- Like dissolves like
  - Demonstrated by visual observation
- Natural soaps and detergents simply did not dissolve greases and oils on their own
- Synthetic Soaps
  - Halocarbon chemistry played an important role in development of more successful synthetic cleaners

#### **Halogenated Solvents**

- Most of the synthesized compounds exhibited characteristics suitable for cleaning
  - Chlorofluorocarbons CFCs
    - Had an unfortunate environmental hazard, ozone depletion
  - Hydrochlorofluorocarbons HCFCs
    - Were marketed as less toxic replacements for current ozone depleting substances
    - Did not eliminate ozone-layer damaging effects

## **Evolution of Solvents**

- Hydrofluoro Carbons HFC
  - Although they contain no chlorine,
  - High vapor pressure and low solubility make them poor cleaners
- Hydrofluoroether HFE
  - Showed potential as a replacement solvent in metal, electronic, and precision cleaning applications
    - Still have Global Warming Potential (GWP)
      - 150-480

# **Evolution of Solvents**

- Perfluorocarbons PFCs
  - Contain only carbon and fluorine atoms
  - Exhibit good cleaning properties and are extremely inert
    - Not viewed as a danger to the ozone layer
    - Atmospheric lifetimes are thought to be thousands of years
      - Most likely have a very strong potential for enhancing global warming

# **Current Work Horse of Cleaning**

- Trichloroethylene TCE
  - Still used in metal cleaning
- Normal Propyl Bromide nPB
  - Was thought to be TCE's replacement
- Perchlorethylene PCE
  - Used because of its non-flammability, high solvency, vapor pressure, and stability
- Trans-1,2-Dichloroethylene
  - Moderately effective
  - Flammability issues

### Downside

- Negative Environmental and health effects
  - Atmospheric ozone depletion
  - Global warming
  - Acid rain formation
  - Carcinogenicity
  - Neurotoxicity
  - Reproductive toxicity
  - Cardiovascular system damage
  - Central nervous system damage

## **Newer to the Market & Revisited**

- Mixtures, Blends and Azeotropes
  - HFE
  - Trans-dichloroethylene (DCE)
  - Furoates
  - Methanol
  - Ethanol
  - Isopropyl alcohol
  - Acetone
  - Cyclopentane

#### **Regrettable Popular Substitutions**

- HydroFluoroEther (HFE)
  - Solstice PF
  - Solstice PF-2A
- Trans-dichloroethylene (DCE)
  - Fluosolv<sup>™</sup> CX
  - Tergo Metal Cleaner
  - Vertrel<sup>™</sup> SDG
  - Opteon<sup>™</sup> Sion

# Why Are HFEs Regrettable Substitutions?

#### • HFE

- Contributes to global warming
- Breaks down into very persistent and toxic PFAS (per- and poly-fluoroalkyl substances) chemicals
  - EPA initiated regulatory development process for listing PFOA and PFOS as CERCLA hazardous substances and hold parties responsible for PFAS releases into the environment (2018)
- Low boiling point
  - Risk of losing chemistry with equipment issues

## **Physical Properties**

|                   | Vapor    | Latent | Surface  | Boiling | Flash |       |      |      | KB    | Exposure |
|-------------------|----------|--------|----------|---------|-------|-------|------|------|-------|----------|
| Physical Property | Pressure | Heat   | tension  | Point   | Point | ODP   | GWP  | VOC  | value | Level    |
| Units             | mm Hg    | cal/g  | dynes/cm | С       | С     |       |      | g/l  |       | ppm      |
| TCE               | 69       | 57     | 29       | 87.2    | none  | 0.007 | <9   | 1456 | 125   | 50       |
| FLUOSOLV_CX       | 340      | 65.3   | 19.1     | 41      | none  | No    | <30  | 1035 | 95    | 200      |
| FLUOSOLV_CX       |          |        |          |         |       |       |      |      |       |          |
| 500               | 525      | 50.3   | 17.8     | 36      | none  | No    | <560 | 325  | 30    | 200      |
| FLUOSOLV_FR1      |          |        |          |         |       |       |      |      |       |          |
| 10                | 525      | 41.3   | 17.5     | 46      | none  | No    | <20  | 0    | 28    | 1000     |
| FLUOSOLV_NC       |          |        |          |         |       |       |      |      |       |          |
| 786               | 525      | 47.5   | 18.5     | 39      | none  | No    | 150  | 255  | 45    | 750      |
| Honeywell PF      | 1185     | 45.6   | 12.7     | 18      | none  | No    | 1    | 0    | 25    | 800      |
| Honeywell PF -    |          |        |          |         |       |       |      |      |       |          |
| 2A                | 1185     | 45.6   | 12.7     | 18      | none  | No    | 1    | 0    | 25    | 800      |
| Vertrel SION      | 335      | 59.8   | 21       | 47      | none  | No    | <1   | 1278 | 100   | 200      |
| Ethyl 2-furoate   | 0.40     | 73.8   | 34       | 196     | 70    | TBD   | TBD  | TBD  | TBD   | TBD      |
| Methyl 2-furoate  | 0.858    | 79.1   | 34       | 181     | 73    | TBD   | TBD  | TBD  | TBD   | TBD      |

# **How TCE Still Being Used in US**

| Type of Degreasing Machine                 | Number Units | Total Annual Air<br>Emissions (lbs/yr) |
|--------------------------------------------|--------------|----------------------------------------|
| Open-top Vapor Degreasing<br>(batch vapor) | 116          | 890,000                                |
| Cold Solvent Cleaning (cold)               | 13           | 140,000                                |
| Conveyorized Vapor Degreasing<br>(in-line) | 11           | 120,000                                |
| General Degreasing Units<br>(unknown)      | 40           | 330,000                                |

Breakdown of Degreasing Machine Type based on NEI Data for Point Source, 2008

#### **TCE Usage in Massachusetts**



#### **TURI Lab 5 Steps to Success**

I. Brainstorm Compatibility and "Lift" Studies



III. Mechanical Energy Studies Number of chemical cleaner candidates further decreases from Phase II

II. Temperature and Concentration Studies Chemical field may be narrowed/changed from Phase I







IV. Actual Product Cleaning Studies Geometries and sizes of parts important to cleaning efficiency



v. Pilot Plant / Scale-up Feasibility Studies Production volumes or throughput dictated by



#### **How to Get Started?**

- Site Visit Walk through
- Safety Screening CleanerSolutions
- EHS Assessment P2OASys
- Performance Testing Customized evaluations
- Pilot Testing/Implementation Working with company to verify success of alternatives