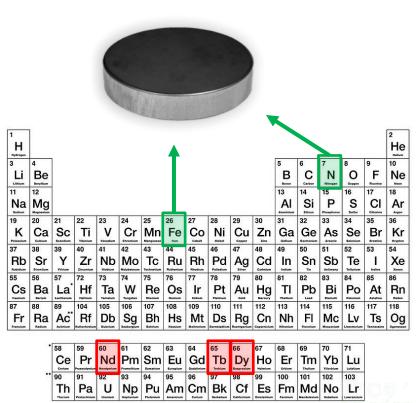
Methanol Elimination at Niron Magnetics

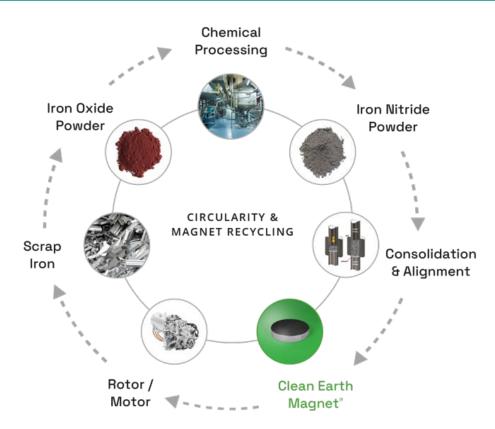
Heidi Herrmann MnTAP Advisor: Jane Paulson Company Supervisor: Nick Umland

Company Background

Company Overview

- Startup in Minneapolis, MN
- 90 employees
- 2 facilities; R&D and Pilot Labs
- Planning stage of first manufacturing plant




Company Background

Clean Earth Magnet[™]

- Magnets made from iron nitride
- First sustainably manufactured high performance permanent magnets
- Use in electronics, speakers, motors, and sensors

Incentives to Change

Methanol Use

- Hazardous chemical
- Regulatory constraints

Hazard	GHS Classification
Flammable Liquid	2
Acute Toxicity - Oral	3
Acute Toxicity - Dermal	3
Acute Toxicity - Inhalation	3
Specific Organ Toxicity	1

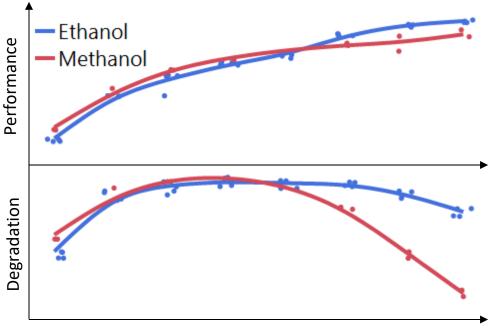
Other Challenges

- Inhibits inherently safer design
 - Powder must be dried outside of process lines
- Requires recycle system
 - Increased equipment costs, energy use

Methanol Replacement

Methods

- Worked with key contacts & EHS team to determine safer alternatives
 - Solvent SDS, Pharos
- Experimentation within process at R&D scale
- Tested magnetic properties of collected samples


Hazard Comparison Summary								
Name	4225	Flammat H30	Le Liquidi	Acute to	11332 1AS	unall ute toxici	ey inhalatic inclarge office inclarge ciffic se is pecific	on orean toxicity single exposure of the sing
Methanol	2	3	3	3	1			
Ethanol	2					3	2A	
Isopropanol	2						2A	
Propylene glycol								

Methanol Replacement

Conclusion

- Ethanol performed best
- Benefits
 - Can be renewably sourced
 - Less regulatory restrictions
 - Less hazardous in terms of health

Time

University of Minnesota

Economic Comparison

Solvent	Solvent Use	Energy to Recycle	Solvent Waste	Capital Expenses
Methanol	\$1,720,000	\$1,280,000	\$2,480,000	\$16,200,000
Ethanol	\$1,830,000	\$850,000	\$2,480,000	\$16,300,000

University of Minnesota

Economic Comparison

Solvent	Solvent Use	Energy to Recycle	Solvent Waste	Capital Expenses
Methanol	\$1,720,000	\$1,280,000	\$2,480,000	\$16,200,000
Ethanol	\$1,830,000	\$850,000	\$2,480,000	\$16,300,000
Solventless	N/A	N/A	N/A	\$0*

*Capital expenses are estimated as the costs directly related to solvent use

Solvent Elimination

Methods

- Testing different types of equipment
- Gathering preliminary data involving the effects of changing certain parameters
- Comparing magnetic properties of collected samples

Conclusion

- Still investigating
- Benefits
 - Inherently safer plant design
 - Regulatory advantages
 - Eliminate waste

Solutions

Recommendation	Annual reduction	Capital Savings	Annual savings	Status
Implement Ethanol	4,560,000 kWh	-\$100,000	\$320,000	Implementing
Solventless Process	13,660,000 kWh 3,650,000 lbs	\$16,200,000	\$5,480,000	Investigating

University of Minnesota

Personal Benefits

- Learned about many different areas of Niron's process
- Fun experience working at a startup company
- Benefit of considering changes from multiple perspectives

