Water Conservation at Heartland Corn Products

David Isaac MnTAP Advisor: Laura Sevcik Company Supervisor: Terry Wendorff

Company Background

Winthrop, Minnesota

- Agriculture cooperative, 1992
- 173,000 m² (32 football fields)
- 60 employees
- Ethanol, corn oils, animal feeds
- 95,000 gal/day wastewater discharge

Figure 1: Evaporators and distillation columns at HCP

Incentive to Change

Expansion

• Increase ethanol production without onsite water treatment facility

Sustainability

- Minimize wastewater discharge to the city
- Enhance energy and water conservation

Manufacturing Process

Cooling Tower (CT)

• Specialized heat exchanger used for cooling industrial processes

Cooling tower water conservation

- 1. Treat wastewater discharge (blowdown)
- 2. Increase cycles of concentration

Increase Cycles of Concentration (COC)

COC is the ratio of blowdown to make-up water

----- City limit

COC is inversely proportional to blowdown

Blowdown

Figure 4: Blowdown based cycles of concentration

Increase COC from 6 – 7 to 9 - 11

Impact: Increase Cycles of Concentration

Figure 5: Annual water and cost savings

University of Minnesota

Solutions

Recommendation	Annual reduction	Total cost	Annual savings	Payback period	Status
Increase cycles of concentration	15,440,000-gal water	\$0	\$17,000	Immediate	Recommended
Recycle 2nd stage RO*	26,000,000-gal RO feed water	\$217,000	\$19,000	6 years	Recommended
Recapture CT Evap water*	15,000,000-gal water	\$2,750,000	-\$13,000	None	Not Recommended
Stack heat recovery⁺	8.82 x 10 ¹¹ BTU	TBD	\$4,410,000	TBD	Future opportunity
Use enzymes active at low temperatures	TBD	TBD	TBD	TBD	Future opportunity

* Must be implemented with increasing cycles of concentration

+ Extrapolated from average energy savings of 6,300 BTU/gal ethanol, 140-million ethanol produced per year and \$0.50/therm

University of Minnesota

Personal Benefits

- Improved critical thinking and decision-making skills
- Exposed to the ethanol industry and learned a lot about RO systems, distillation systems, and cooling tower
- Improved communication skills by interacting with engineering contractors and HCP staff
- HCP staff were fun and welcoming

Figure 6: David recording RO conductivity data at HCP site

University of Minnesota