Water Conservation at Great Lakes Coca Cola

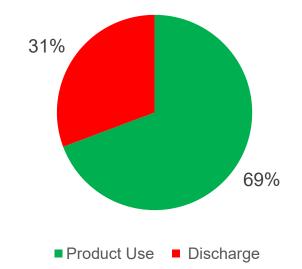
Muhammad Fawad Khan MnTAP Advisor: Matt Domski Company Supervisor: Mark Hammerbeck

> UNIVERSITY OF MINNESOTA Driven to Discover^{ss}

Company Background

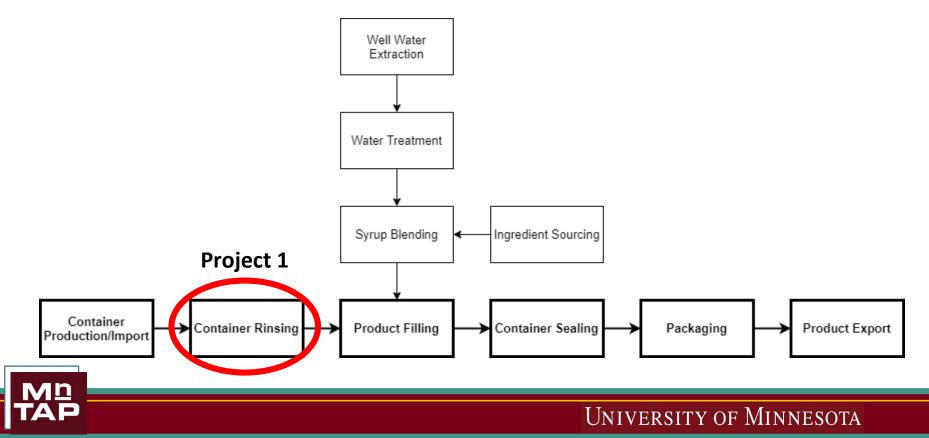
Great Lakes Coca Cola

- •Products: Beverage
- •Location: Eagan, MN
- •Employees: 600
- •Size: 640,000 sq ft


M<u>n</u> TAP

Incentives to Change

Primary Incentives


- •Decrease overall water usage
- Increase plant efficiency
- Reduce costs

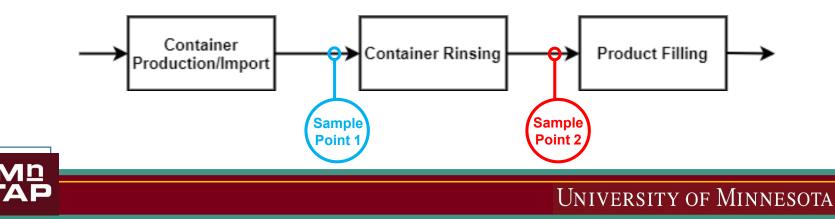
GLCC Eagan Facility Water Usage

M<u>n</u> TAP

Simplified Process Flow

Project 1. Container Rinser Optimization

Background

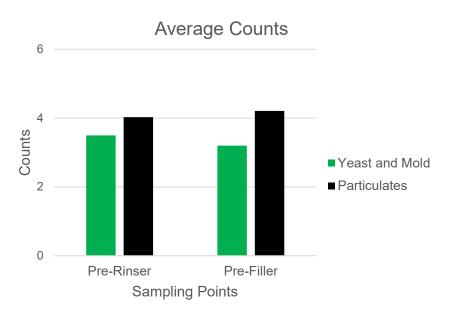

- Production of bottles in line
- Redundancy of rinsing process

Approach

•Collect and filter samples for

- •Particulates
- •Microbiological matter

•Analyze significance in difference

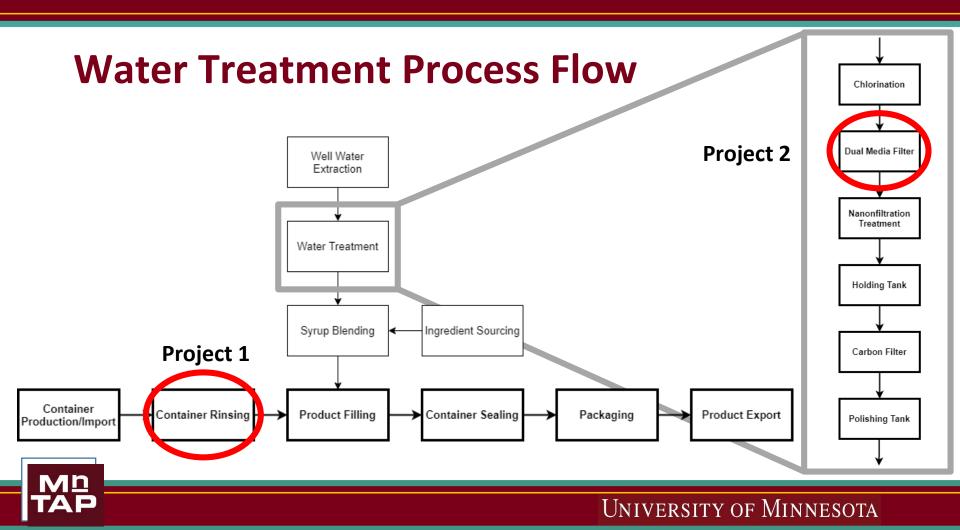


Rinser Sampling Results

•Slight increase in particulates

Slight decrease in yeast and mold

•Results within ±10% are accepted


Recommendations

Option		Recommendation	Annual Reduction (gal water)	Total Cost	Minimum Annual Savings*	Payback Period	Status
1		Reduce flowrate to 1 gpm	450,000	\$0	\$1100+	Immediate	Tentative recommendation
2	A.	Turn off water flow	800,000	\$0	\$2600+	Immediate	More sampling needed
	В.	Remove rinser		\$255,000		Investigating	

*Savings do not include energy or maintenance costs

University of Minnesota

Project 2. Backwash Optimization

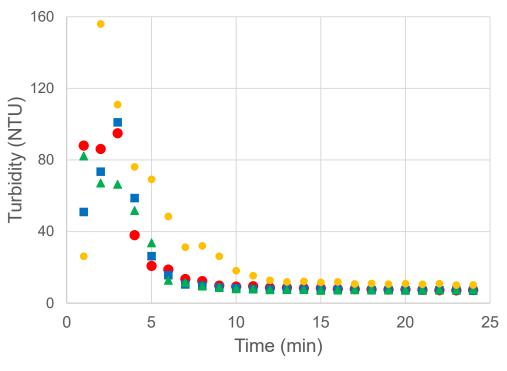
Background

- •Cleans dual media filter
- •Occurs twice a week
- •Runs for a pre-determined time

Approach

•Collect samples and measure turbidity

Observe where curve flattens


Backwash Sampling Results

•Results:

Tank(s)	Flatline Time (min)				
1 and 3	15				
2	11				
4	18				

•Each minute reduced = \$900+ in additional savings

Dual Media Tanks

● Tank 1 ■ Tank 2 ▲ Tank 3 ● Tank 4

M<u>n</u> TAP

Recommendations

Option	Recommendation	Annual Reduction (gal water)	Total Cost	Minimum Annual Savings*	Payback Period	Status
1	Reduce backwash time to 20 min	1,250,000	\$0	\$4600+	Immediate	Highly recommended
2	Install turbidity sensor	2,560,000	\$14,000	\$9500+	1.5 years	Future recommendation

*Savings do not include energy or maintenance costs

Summary of Solutions

Project	Recommendation	Annual Reduction (gal water)	Total Cost	Minimum Annual Savings*	Payback Period	Status
Container	Reduce flowrate to 1 gpm	450,000	\$0	\$1700+	Immediate	Tentative recommendation
Rinser Optimization	A. Turn off water flow	800,000	\$0	\$2900+	Immediate	More sampling needed
optimization	B. Remove rinser		\$255,000		Investigating	
Dual Media Tank	Reduce backwash time to 20 min	1,250,000	\$0	\$4600+	Immediate	Highly recommended
Backwash Optimization	Install turbidity sensor	2,560,000	\$14,000	\$9500+	1.5 years	Future recommendation
CIP Procedure Optimization	Install new CIP technology	TBD	TBD	TBD	TBD	Investigating

*Savings do not include energy or maintenance costs

Mn

University of Minnesota

Personal Benefits

- •Gained valuable industry experience
- •Networked with industry professionals
- Learned about personal interests
- •Started building my own can collection
- •Had a fun time

