Phosphorous and Water Reductions at Minnesota Speciality Yeast LLC.

Matthew Landauer MnTAP Advisor: Daniel Chang Company Supervisor: Scott Sederstrom

Company Background

Minnesota Specialty Yeast (MSY)

•Purchased by Lallemand in 2019

- •Novel Yeast Production
- •7.5 millions tons of yeast cream annually

https://goo.gl/maps/75WBDbcHjQCVSuhUA

Project Overviews

Phosphorous Reduction

- •700,000 lbs used in 2019
- •10,000 lbs sewered

Curbing Water Usage

- •1.8 million GPD of Well Water
- •450 million gallons in 2019
- •Primary use for Fermenter Cooling

Water Flow Path

Pipe Tracking and Metering

- •Primary to Fermenters
- •Mix for Compressors
- •Spent for Process Water
- •CIP, Other Heat Exchangers

Phosphorus Sewer Profile

Tracking Phosphorus Usage

- •Fermenter Upset, Shutdown
- •Yeast Food Source
- Microbial Treatment

Phosphoric Acid in Microbe Treatment

pH and Microbes

- •Microbes "best" at 6 pH
- •Production at 4 pH
- •Treatment at 2 pH
- •Phosphoric Acid used to decrease pH

M<u>n</u> TAP https://www.researchgate.net/figure/Description-curve-of-pH-effect-on-specific-growth-rate-for-bacteria_fig1_236896643

Primary Recommendation

Phosphoric Acid Flow Path

Sulfuric Acid Flow Path

Prioritizing Sulfuric Acid

Benefit Breakdown

Monetary and Environmental Savings

- •Savings from Sewer Charge
- •15% reduction into sewer
- •No capital cost

Recommendation	Annual reduction	Total cost	Annual savings	Payback period	Status
Sulfuric Acid for pH Drops	1,040 lbs Phosphorus	\$0	\$6,500	Immediate	Implementing

Solutions

Recommendation	Annual reduction	Total cost	Annual savings	Payback period	Status
Sulfuric Acid for pH Drops	1,040 lbs Phosphorus	\$0	\$6,500	Immediate	Implementing
Process Water Control	145gal sulfuric acid	\$0	\$420	Immediate	Implementing
Softened Water for Boiler	1,340,000gal water, 3,900 therms	\$100	\$7,500	5 days	Recommended
Boiler Preheat with Process Heat	3,900therms	~\$2,500	\$3,300	~9 months	Recommended
Reduce Centrifuge CIP Rinse Times	480,000 gal water	\$1,500	\$4,300	4 months	Recommended

Anecdote

- New Process, Existing Systems

 Lower Capital Costs
 - In-house Testing
- **Personal Benefits**
 - Apply course knowledgeOpen mind to Information

Questions?

1.1

