Water Conservation at Lifecore Biomedical, LLC

Elisabeth King

MnTAP Advisors: Taylor Borgfeldt and Matt Domski

Company Supervisor: Kevin Mijal

University of Minnesota

Driven to DiscoverSM

Company Background

Biopharmaceutical Sector

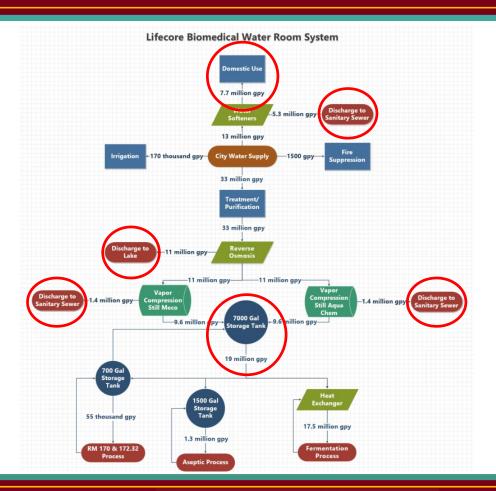
- Two facilities in Chaska, MN
- Around 350 employees
- Operating 24/7 based on 3 shifts
- Manufactures sodium hyaluronate
- Manufactures injectable drugs
- Clinical injectable development

Sodium Hyaluronate Products (lifecore.com)

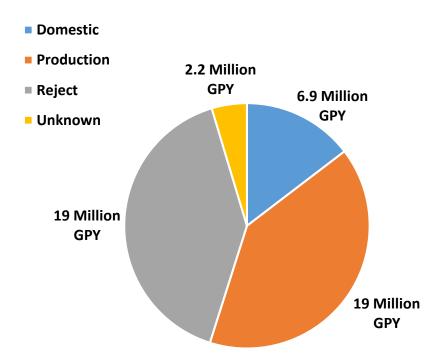
Project Motivation

Vapor Compression Still (meco.com)

Water is Key Component


- Need for consistent Water for Injection (WFI)
- Cost and equipment of WFI
- Possibility of expansion

Project Overview


Water Conservation

- Map water use in facility
- Quantify water intensive procedures
- Identify areas of water conservation

Water Overview

Not Included:IrrigationFire Suppression System	Amount (MGPY) 0.17 0.0015
	0.0013
• Domestic:	
 Condensate coolers 	5.3
Toilets and sinks	1.5
 Boilers, chillers, cooling 	0.12
• Production:	
 Fermentation 	17.5
• Aseptic	1.5
• Reject:	
 Reverse osmosis system 	11.0
 Water softeners 	5.3
 Vapor compression stills 	2.8

Approach

Gather Information

- Analyze records
- Use ultrasonic flow meter
- Observe and meet with technicians

Apply Information

- Collect more data
- Research
- Create documentation

Primary Recommendation

Adjustment to SOP – Remove "Trickle"

Trickle (✓)				
□ Yes □ No				
□ Yes □ No				
□ Yes □ No				

Background

- Heat exchangers and pipes needs to be sanitized before use
- Constant low flow left on
- Benefits of trickle not previously tested

Primary Recommendation

Adjustment to SOP – Remove "Trickle"

Methods

- Collected water samples from sink ports without trickle
- Selected sinks with shortest and longest pipe distance

Results

- Both sinks had 0 CFU/100mL bioburden and < 0.0050 EU/mL endotoxin after 24 hours
- Change practice to leave sinks off and sanitize once every 24 hours

Recommendation	Annual reduction	Total cost	Annual savings	Payback period	Status
Remove practice of leaving sinks on	43,000 – 77,000	\$10,000 - \$20,000	\$90,000 - \$160,000	0.5 - 1 months	Implementing

Solutions

Recommendation	Annual reduction (gallons)	Total cost	Annual savings	Payback period	Status
Create water use training	25,000 - 570,000	\$5,000 - \$10,000	\$55,000 -\$1,200,000	5 days - 2 months	Implemented
Remove practice of leaving sinks on	43,000 - 77,000	\$10,000 - \$20,000	\$90,000 - \$160,000	0.5 - 1.5 months	Implementing
Repair and adjust condensate coolers	2,500,000 - 3,000,000	\$5,000 - \$10,000	\$17,000 - \$21,000	1 - 1.5 months	Implementing
Install process water meters	42,000 - 68,000	\$12,000 - \$26,000	\$90,000 - \$140,000	1 - 3.5 months	Recommended
Change filter press cloth type	45,000 - 90,000	\$45,000 - \$70,000	\$96,000 - \$190,000	4 - 6 months	Recommended
Replace reverse osmosis system	11,000,000 - 11,500,000	\$250,000 - \$320,000	\$71,000 - \$77,000	3 - 4 years	Recommended

Anecdote

Cleanroom Gowning

- Learned about cleanrooms and controlled environments
- Became yellow and blue gowning certified (ISO 7 & 8 cleanrooms)

•Discovered scrubs are comfy!

