# TCE Elimination and Improving Product Yield: A Symbiotic Relationship

Anja Savic

**MnTAP Advisor: Jane Paulson** 

#### UNIVERSITY OF MINNESOTA Driven to Discover™



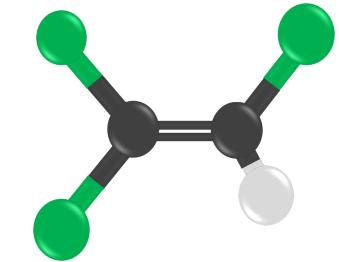
University of Minnesota

### **Company Background**

- Large-scale component manufacturer.
  - Stamping
  - Drawing
  - Trimming
- Trichloroethylene (TCE) vapor degreaser used to remove lubricants from products.
- Collaboration with MnTAP over the past year to remove TCE.






University of Minnesota

### Trichloroethylene

- Chlorinated solvent commonly used in industrial degreasing
  - Hazardous air pollutant
  - Known human carcinogen
    - Affects liver, kidneys, immune, reproductive, and central nervous systems
- Minnesota Legislature passed a TCE Ban in May 2020
  - Applies to facilities with state-issued air permits
  - Effective June 2022







#### **Project Overview**

- TCE vapor degreaser used to remove lubricants from products.
- New cleaning system eliminates TCE.
  - Vacuum degreaser.
  - Modified alcohol solvent.
  - Implementation in progress.
- Studies conducted to support the implementation and validation of new cleaning process.



#### **Product Yield Improvement**

- Designed experiment to explore effects of cleaning and annealing parameters on product quality
  - Pre-cleaning
  - Post-cleaning
  - Annealing temperature



- Contamination on parts during annealing may result in defects.
- Higher level of cleaning provided by vacuum degreaser may allow for removal of:
  - Manual pre-cleaning (mineral spirits)
  - Final automated cleaning (aqueous cleaner)
- Parts will be assessed visually and with hardness testing.



## Annealing

- Currently, parts annealed off-site at high temperature.
- Past studies suggest improved part quality at lower annealing temperature.
  - Uniform microstructure.
- Lower temperature also allows in-house annealing.
  - Lower energy (overall).
  - Reduced lead times.
  - Reduced transportation costs and emissions.





#### UNIVERSITY OF MINNESOTA

#### **Solutions**

| Recommendation                                                    | Annual<br>Reduction | Total Cost            | Annual<br>Savings | Payback<br>Period | Status       |
|-------------------------------------------------------------------|---------------------|-----------------------|-------------------|-------------------|--------------|
| Reduce annealing temperature                                      | TBD (kWh)           | None                  | TBD               | Immediate         | Implementing |
| Elimination of Mineral Spirit<br>(MS) Pre-Wash                    | 2,100 lbs           | None                  | \$2,400           | Immediate         | Implementing |
| Replacement of TCE with vacuum degreaser                          | 15,000 lbs          | \$400,000/<br>machine | \$9,300+          | N/A               | Implementing |
| Monitor solvent life and<br>effectiveness through dyne<br>testing | 4,800 lbs           | \$130                 | \$20,700          | TBD               | Recommended  |



UNIVERSITY OF MINNESOTA

#### **Personal Benefits**

- Exposure to a manufacturing floor
- Understanding the intersection of process and quality engineering
- Learning how Lean and Six Sigma tools are applied
- Importance of documentation and root cause analysis



#### UNIVERSITY OF MINNESOTA

