Water Conservation City of Plymouth

Sam Mader

Advisor: Nathan Landwehr

UNIVERSITY OF MINNESOTA Driven to Discover™

City Background

- Suburb 12 miles northwest of Minneapolis
- Population of 78,351 (7th Largest in MN)
- Eight lakes and more than 800 wetlands
- Water distribution to residents and businesses
 - Groundwater sources: three Aquifers
 - Two water treatment plants

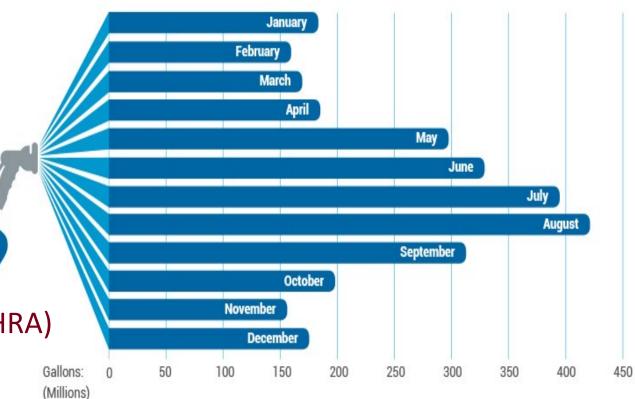


Figure 1: One of Plymouth's Five Water Towers

Project Overview

- Current Situation
 - 3 billion gallons of water in 2018
 - 16.5 million gallons on city irrigation
- Goals
 - City-wide water audit with recommendations
 - Optimize city irrigation system
 - Housing & Redevelopment Authority (HRA) appliance and fixture efficiency study

Water Audit – Purpose

- Benchmarking
 - Water resource management
- Operational Efficiency
 - Reliance on resources
 - Efficient water delivery
 - Costly: estimated cost of nonrevenue water (NRW) = \$322,000
- Long Term Planning
 - Better data
 - Proactive leakage control

Water Audit – Approach

Data collection

- AWWA Free Water Audit Software v5
- 21 inputs
 - Finance
 - Public Works
 - Engineering & Water Resources
 - Geographic Information System (GIS)

Data scoring

- "Data validity score" 1-10
- Guidance from software

	To select the correct data grading for each input, determ	
	where the utility meets or exceeds all criteria for that grade an	nd all grades below it.
WATER SUPPLIED	<	Enter grading in
	Volume from own sources: + ? 🦳	
	Water imported: + ?	
	Water exported: + ?	
	WATER SUPPLIED:	0.000
AUTHORIZED CONS	SUMPTION	
	Billed metered: + ?	
	Billed unmetered: + ?	
	Unbilled metered: 🛨 🙎	
	Unbilled unmetered: + 🙎	0.000
	Default option selected for Unbilled unmetered - a gr	ading of 5 is applied bu
	AUTHORIZED CONSUMPTION:	0.000
WATER LOSSES (W	Vater Supplied - Authorized Consumption)	0.000
Apparent Losses		
Apparent 200000	Unauthorized consumption: 🔸 ?	0.000
	Default option selected for unauthorized consumption - a	
	Customer metering inaccuracies: + ?	0.000
	Systematic data handling errors: + ?	0.000
		0.000
	Apparent Losses: ?	0.000
Real Losses (Curre	ent Annual Real Losses or CARL)	
	eal Losses = Water Losses - Apparent Losses: ?	0.000
	WATER LOSSES:	0.000
	TATEN COSCS.	0.000

Water Audit – Results

Water Balance Overview				

Water Audit – Results

- Water Audit Data Validity Score: 72 out of 100 (Level IV Goal is Level V)
- Current Annual Real Losses (CARL): 114 million gallons
- Unavoidable Annual Real Losses (UARL): 194 million gallons
 - Calculated from system parameters (operating pressure, length of mains, etc.)
- Infrastructure Leakage Index (ILI) = 0.58
 - ILI < 1.0 indicates:
 - World class leakage control
 - <u>OR</u>
 - Non-conforming data

$$ILI = \frac{CARL}{UARL}$$

Water Audit – Recommendations

1. Conduct water audit annually

- Cost: ~ \$750 per year
- Benefits:
 - Benchmarking
 - More/better data needed for informed decision making

Water Audit – Recommendations

- **1. Conduct water audit annually**
- 2. Electronically calibrate and volumetrically test all source meters
 - Cost: ~ \$1,500 per year
 - Benefits:
 - Improve overall data integrity
 - Determine if meter maintenance / replacement necessary
 - Accurate supply and loss estimates

Water Audit – Recommendations

- **1. Conduct water audit annually**
- 2. Electronically calibrate and volumetrically test all source meters
- 3. Establish a customer meter testing policy
 - Cost: ~ \$12,000 per year
 - Benefits:
 - Improved data integrity resulting in more accurate apparent loss estimates
 - Gauge the accuracy of customer metering population
 - Maintenance/replacements of inaccurate meters as necessary

Irrigation Optimization - Approach

- Evapotranspiration (ET) calculations for optimal run times
 - Classify greenspace as playfield, recreational, or aesthetic
 - 4 test sites: incremental reductions

 $Water Requirement = \frac{Irrigation Factor \times Area}{Irrigation System Efficiency} \times Usage Multiplier$

- 5 soil moisture sensors installed at Zachary Playfield (installed 6-26 and went operational 7-11)
 - Upper and lower moisture thresholds
 - Moisture data & hydro reports used to determine savings

Figure 2: Toro[®] Turf **Guard Moisture Sensor**

Irrigation Optimization – ET Run Time Calculator

SUPPLEMENTAL WATER CALCULATOR				
(Turfgrass)				
Area of Zone:	5,000	Square feet		
Total Flow Rate:	22.0	GPM		
Days of Watering Per Week:	3.5	Days per week		
Efficiency of Irrigation System:	Medium			
Purpose of Greenspace:	Aesthetic			
CALCULATE				
ZONE RUN TIME 12 Minutes				

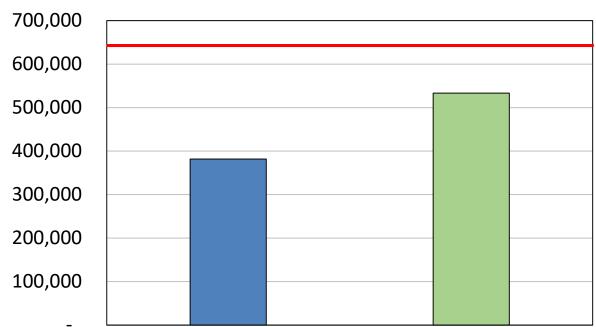
FLOW RATE CALCULATOR				
Zone Operating Pressure: 45 PSI				
Please select the nu	lease select the number of heads within the zone and press calculate.			
CALCULA	TE	Total Flow:	137.8	GPM
-				
Toro ® 640 Se			Toro ® S600 S	
Nozzle Size		1	Nozzle Size	
40	6		1.3	0
41	2		2.5	0
42	2		5.0	0
43	4			
44	0		Toro ® S600S	
			Nozzle Size	Quantity
Toro ® TR50X	T Series		1.3	0
Nozzle Size	Quantity		2.5	0
1.0	0		6.0	0
1.5	0		9.0	0
2.0	0			
3.0	0		Toro ® \$800 \$	eries
4.5	0		Nozzle Size	Quantity
6.0	0		0.5	0
7.5	0		0.8	0
9.0	0		1.0	0
			2.0	0
Toro ® 570Z S	eries		2.5	0
Model	Quantity		3.0	0
570Z	0		4.0	0
570Z XF	0		6.0	0
570Z PR	0		8.0	0
570Z PRX	0			
Press this butto	Press this button to clear all selections: CLEAR ALL			

Irrigation Optimization – Results (ET calc.)

Greenspace	Experimental	Practical
Classification	Savings	Savings
Playfield (Soccer)	33%	23%
Playfield (Baseball)	27%	14%
Recreational	20%	10%
Aesthetic	40%	24%

45% 40% 35% 30% 25% 20% 15% 10% 5% 0% Playfield Playfield Recreational Aesthetic (Soccer) (Baseball)

Experimental Savings


UNIVERSITY OF MINNESOTA

Practical Savings

Water Savings

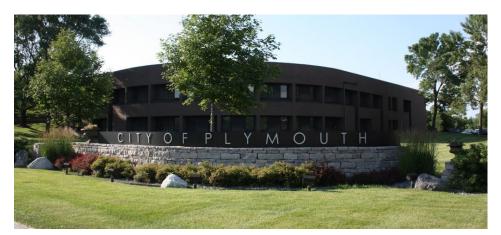
Irrigation Optimization – Results (Sensors)

- Moisture sensor savings
 - Compared to original settings: 41%
 - Compared to ET calculations: 29%
- Rain-adjustments did not influence savings

Water Consumption

Moisture Control (actual) ET Calculations (theoretical)

Original Settings


Irrigation Optimization – Recommendations

Recommendation	Implementation Cost	Annual Water Saved (gallons)	Annual Savings	Payback Period

Figure 3: Baseball field Irrigation System

Figure 4: Plymouth City Hall

HRA Water Efficiency – Approach

 Housing & Redevelopment Authority (HRA) manages 2 assisted living facilities (Plymouth Towne Square & Vicksburg Crossing)

Fixture Assessment of 27 units

- Flow rate recorded (bucket & stopwatch test)
- Benchmark water use per unit

Figure 6: Vicksburg Crossing

Figure 5: Plymouth Towne Square

HRA Water Efficiency – Recommendations

I	Recommendation	Implementation Cost	Water/Energy Reductions Per Year	Annual Savings	Payback Period

Overall Yearly Savings Potential

Resource	Amount
Water	6,254,000 gallons
Natural Gas	5,280 therms
Electricity	720 kWh
Money	\$17,730

Personal Benefits and Takeaways

- Not every problem has a single "correct" solution
 - May need to make assumptions
- Importance of time management
 - Large scale projects require careful planning
 - Multiple tasks with changing deadlines
- Communication is key
 - Different departments have different policies and goals
 - Engineering & Water Resources, Public Works, Finance, etc.

