Water Conservation at Seneca Foods

Larry Lau

Chemical Engineering, University of Illinois Urbana-Champaign, Junior

MnTAP Advisors: Daniel Chang

Company Supervisor: Mike Stumm

University of Minnesota

Driven to DiscoverSM

Company Background

- Founded in 1949
- Originally Seneca Grape Juice
- Worlds largest processor of canned vegetables
- Headquartered in Marion, New York
- Site: Glencoe, Minnesota
- Major Products
 - Peas, Corn

Farm Fresh Goodness Made Great

Figure 1. Peas from truck

Project Overview

Current Situation

- Ponds are close to overflowing
 - •Wastewater to ponds annually: 221,000,000 gallons
 - •Maximum capacity of ponds: 292,000,000 gallons
- Water is not metered completely

•Goals

- Reduce wastewater sent to ponds
- •Track water usage throughout the plant

Figure 2. Seneca Stabilization ponds

Process Overview

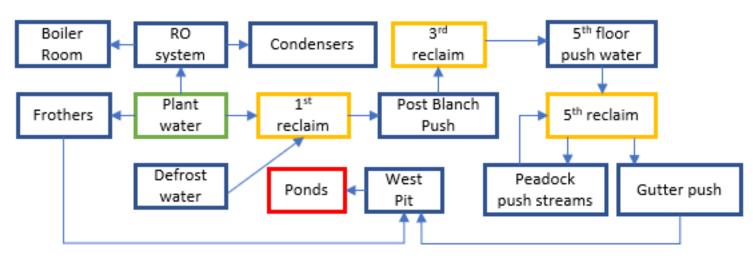


Figure 3. Pea production diagram

Approach

- Map out water usage during pea production
- Identify areas of plant water consumption
- Assess areas where plant water is being lost
- Estimate plant water being lost
- Analyze and investigate solutions for reduction

Figure 4. Dewatering belt

Water Usage at Frothwashers

- •500,000 gallons of plantwater through system daily
- Overflow of around 50%
- Cannot be reused due to frothing solution
- Annual Cost of \$5400

Figure 5. Frothwashers

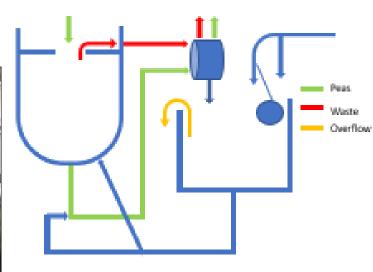


Figure 6. Frothwasher diagram

Primary Recommendation

Optimize Frothwashers Flow Controls

- Adjust/Add floats
- Replace broken valves
- Add signage for fill valves
- Increase splash guard height

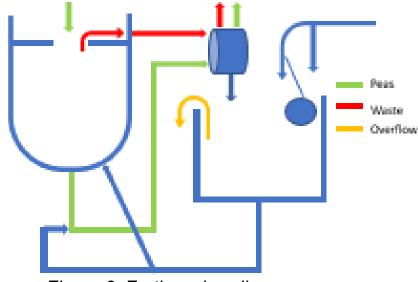


Figure 6. Frothwasher diagram

Solutions

Recommendation	Annual reduction	Total cost	Annual savings	Payback period	Status
Optimize Frothwasher flow controls	28,000,000 gal of water	\$2770	\$5400	6 months	Recommended
Replace nozzles on hoses and adding signage	24,000,000 gal of water	\$1330	\$4640	4 months	Recommended
Reduce flow of push water	1,350,000 gal of water	-none-	\$260	NA	Recommended
Readjust spray nozzles at the 5 th reclaim	275,000 gal of water	-none-	\$50	NA	Recommended
Don't use hoses	550,000 gal of water	-none-	\$110	NA	Recommended
Fix leaks throughout the plant	1,950,000 gal of water	Unknown	\$1022+	2.5 years+	Investigating

Anecdote

- Learned how to actively seek information
- How to operate in an industrial setting

Figure 7. Another dewatering belt

