

Bailey Erickson, Chemical Engineering

MnTAP Advisor: Michelle Gage

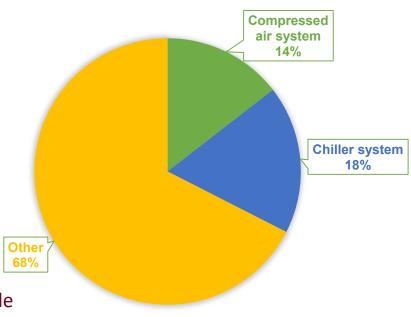
Company Supervisor: Jeff Eidenschink

University of Minnesota

Driven to Discovers

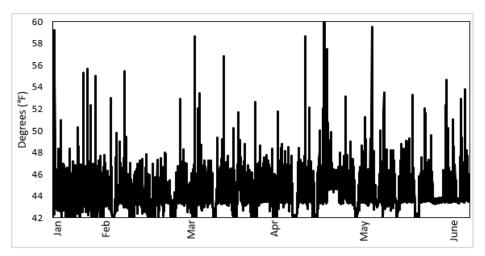
Aveda Company Background

- Part of Estée Lauder
- •Blaine, MN
- •750 employees
- •Organic, cruelty free hair and personal care products
- •Environmentally sustainable business model


Project Motivations

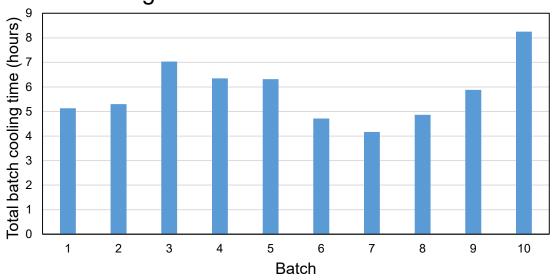
- Aveda's mission, environmental sustainability
- •Compressed air:
 - •Estimated 15-20% leaks
- •Chiller system:
 - Current system over 20 years old
 - Production requires more capacity

•Waste:


•Strength and sewer accessibility charges from off-grade product waste

AVEDA ENERGY USE

Project Motivations - Chiller


Chiller Supply Temperatures

- •Chilled water temperature is highly variable
- •Peaks correlate to increased production demand
- •New chiller system: larger capacity, will keep the chilled water supply temperature stable

Project Motivations - Chiller

Cooling Times for Product in Main Tank

- Varied chilled water temperature causes variation in batch cooling times
- •Range: 4.2 hours to 8.3 hours
- Larger capacity chiller with stable water supply temperatures will minimize batch cooling times

Project Goals

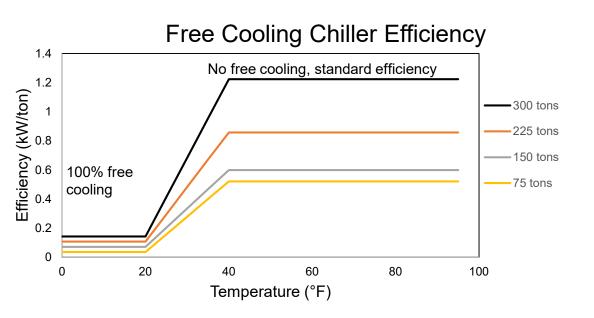
- Reduce energy use in compressed air system
- •Recommend more efficient chiller with higher capacity to meet increased production demands
- •Reduce off-grade waste generation, improve waste management procedure

Approach

- •Gathered and analyzed energy use data for plant
- Compressed air end uses
- Current chiller system performance
- Process map of waste management system

Chiller Energy Reduction Options

Heat recovery chiller


- Efficiency varies with percent load
- Higher average system efficiency
- Lower initial cost
- Smaller plant footprint

Free cooling chiller

- Efficiency varies with temperature and percent load
- Larger plant footprint, would be installed on rooftop
- •Minnesota temperatures: free cooling mode 41% of time

Free Cooling Chiller Efficiencies

- Efficiency varies with load and temperature
- •Below 100% free cooling temperature (23°F), chiller power consumption is condenser fans
- •Above chilled water temperature (40°F), standard efficiency
- •Linear relationship between efficiency and temperature in free cooling mode

Primary Recommendation:

Heat recovery screw chiller system

	Current chiller system	Heat recovery chiller system	Free cooling chiller system
Total capacity	360 tons	600 tons	600 tons
Efficiency	1.77 kW/ton	0.93 kW/ton	1.02 kW/ton
Savings (per year)	-	128,100 kWh	115,110 kWh

Benefits of heat recovery chiller system:

- Two equal sized chillers, full redundancy
- 53% energy reduction, saves 128,000 kWh/year
- \$13,500 savings in energy costs annually
- Decreased cooling times, extra production time

Recommendation	Annual reduction	Initial cost	Annual savings	Payback period	Status			
Heat recovery chiller	128,000 kWh	\$500,000*	\$ 13,500 + increased production capacity	< 1 year**	Planned			
Compressed air leak maintenance	42,000,000 ft ³ air 58,500 kWh	None	\$10,000	Immediate	Implementing			
Turn off air to production lines that are not in use	8,000,000 ft ³ air 22,500 kWh	None	\$2,000	Immediate	Implementing			
Replace current air compressor system with one, larger variable speed compressor	55,000 kWh	\$40,000*	\$5,500	7.3 years	Planned			
Replace 5 portable compressed air motors with electric motors	3,000,000 ft ³ air 8,500 kWh	\$7,500*	\$750	10 years*	Recommended			
Filter drum for wastewater	18,000 gal water 180 kWh	\$190,000	≤ \$30,600	6.2 years	Recommended			
*rebates available, **including decreased cooling times and increased production savings (some reduction options not shown)								
University of Minnesota								

Total Potential Waste Reductions (per year)

- •640,000 kWh
- •50,700,000 ft³ of compressed air
- •18,000 gallons of water
- •18,000 gallons of off-grade waste
- •175,000 kg CO₂
- Additional 245 + hours of production time
- **•**\$240,000

Personal experience

- •Great learning opportunities, engineering work experience
- •Nice working environment, chance to work with several different teams
- •Wonderful products, appreciated chance to try all different kinds of Aveda products

