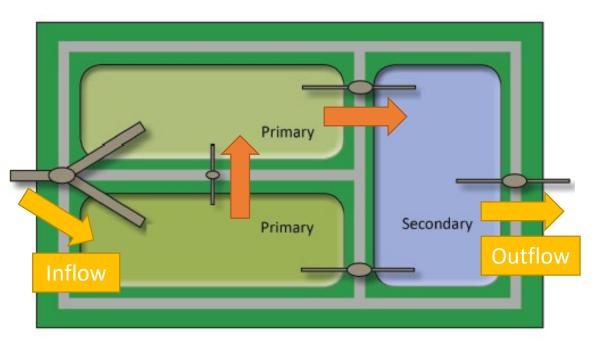
Pond Systems Nutrient Removal

Amit Itkin MnTAP Advisor: Jon Vanyo

UNIVERSITY OF MINNESOTA Driven to Discover™

Project Background

- Project started in 2017
- Working with MRWA and MPCA
- Phosphorus and nitrogen removal in facultative WWTPs
- Nutrients cause algae blooms
- Sandstone, Onamia, and Grand Meadow


MINNESOTA POLLUTION CONTROL AGENCY

Project Overview

- How facultative ponds work
 - Aerobic and anaerobic zones
 - Water flows through several treatment ponds
 - Longer held and deeper waters more effective
 - Phosphorus often an issue

Typical Facultative Pond Layout

Source: MPCA, "Stabilization Pond Systems", 2013

University of Minnesota

Approach

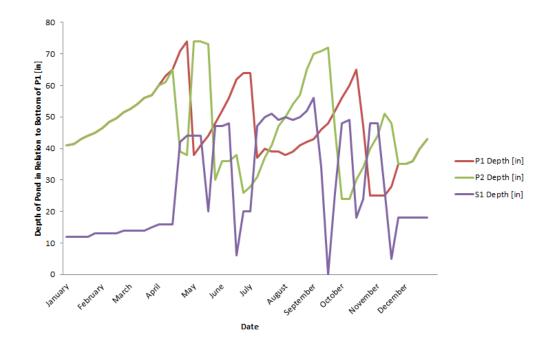
- Pond Operation Spreadsheet
 - 327 ponds
 - Phosphorus removal ranking
 - Correlation analysis
- Correlation between phosphorus removal treatment and hydraulic retention time (HRT)

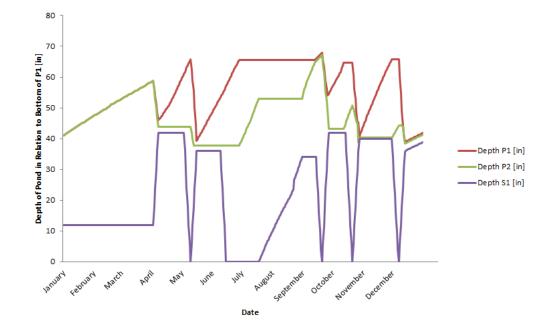
	Average Influent P [mg/L]	Average Effluent P [mg/L]	Mass Influent P [lb/d]	Mass Effluent P [lb/d]	Theoretical P loading [lb P/d/acre]	Actual P loading [lb P/d/acre]	P Remov
Average Influent P [mg/L]	1.000						
Average Effluent P [mg/L]	0.194						
Mass Influent P [lb/d]	0.421						
Mass Effluent P [lb/d]	0.136						
[heoretical P loading [lb P/d/acre]	0.946			0.223	1.000)	
Actual P loading [Ib P/d/acre]	0.387				0.377		
P Removal Efficiency	0.295			-0.215	0.218		1
verage Effluent N [mg/L]	0.059				0.194		
lass Effluent N [lb/d]	0.068				-0.008		
werage Influent TSS [mg/L]	0.332	0.130	0.257		0.388	0.237	7
werage Effluent TSS [mg/L]	0.143				0.073		Э
heoretical TSS loading [lb TSS/d/acre]	0.408		0.131		0.392)
Actual TSS loading [lb TSS/d/acre]	0.122		0.484		0.075		0
SS Removal Efficiency	0.001				0.20		
30D inf [mg/L]	0.473			0.064	0.793		1
30D eff [mg/L]	0.140				-0.083		1
Prefered Flow [mgd]	0.079				0.034		1
Recorded Flow [mgd]	0.023				-0.133		9
Difference	-0.186	-0.040	0.090	0.195	-0.275	0.735	9
ourface area [acres]	0.061	0.162			0.033		3
Prefered HRT Assuming full Volume [d]	0.210	0.051	0.076	-0.078	-0.089)
Recorded HRT Assuming full Volume [d]	0.396				0.313		7
(ctual BOD Loading [lb BOD/d/acre]	0.385	0.271	0.425	0.294	0.370	0.87	1
heoretical BOD loading [Ib BOD/d/acre]	0.799				0.843		
OD Removal Efficiency	0.008	-0.115	-0.017	0.000	0.204	0.120	0
н	-0.016				0.125	5 0.182	2
emp [C]	-0.101	-0.311	0.594	-0.499	#DIV/0!	#DIV/0!	
ecal Coliform [#/100 ml]	0.020				0.119		2
)O [mg/L]	-0.048	-0.061			-0.247	-0.156	6
Chloride, Total [mg/L]	0.201	-0.021			-0.226		3
Precipitation [in/month]	-0.084				-0.233		
)ischarges/Yr	-0.029				-0.244		
of Ponds	-0.033			0.079	-0.013		1
t of Primaries	0.015			0.175	0.027		
f of Secondaries	-0.055				-0.03		
daterfowl Estimate	0.997	0.835	0.744	0.596	0.986	0.158	3
otal Volume [FT^3]	0.051				0.029		
Primary SA	0.179				0.183		3
2 Primary Vol	0.126				0.130		
Prioritization	0.006				-0.119		
Prioritization	-0.033		0.126		-0.076		1
riteria Score Excluding Mass Effluent	-0.088		-0.119		0.208		
lanking	-0.085	0.819	-0.117	0.231	0.218		
Criteria Score	-0.065		0.093		0.192		
Banking	-0.057	0.776	0.086	0.429	0.185	0.433	9

Example of correlation analysis

Approach

- Visited the sites
- Analyzed flow schemes
- Determined opportunities for removal
- Looked for major sources of phosphorus


Grand Meadow WWTP Secondary Pond



University of Minnesota

Primary Recommendation

Optimize flow scheme

Figure 2: Onamia Modified Flow Scheme

UNIVERSITY OF MINNESOTA

Solutions: Sandstone

Recommendation	Annual Phosphorus Reduction (lb)	Implementation Cost (per year)	Cost effectiveness (\$ per P lb)	Annual Savings	Status
Modify Flow Scheme	100 lb 60,000 kWh	\$0	\$0	\$4,800	Implementing
Alum Phosphorus Removal	Up to 3,600lb	Up to \$26,000	\$8.33	N/A	Recommended

Solutions: Onamia

Recommendation	Annual Phosphorus Reduction (lb)	Implementation Cost (per year)	Cost effectiveness (\$ per P lb treatment)	Status
Modify Flow Scheme	70 lb	\$0	\$0	Implementing
Alum Phosphorus Removal	Up to 760 lb	Up to \$6,800	\$8.33	Recommended
Waterfowl Prevention	130 lb	\$142 \$120 one-time cost	\$0.98	Implementing
Inflow and Infiltration Reduction	180 lb 27,000,000 gal water	Unknown	N/A	Recommended

University of Minnesota

Solutions: Grand Meadow

Recommendation	Annual Phosphorus Reduction (lb)	Implementation Cost (per year)	Cost effectiveness (\$ per P lb treatment)	Status
Modify Flow Scheme	35 lb	\$0	\$0	Implementing
Alum Phosphorus Removal	Up to 1,000 lb	Up to \$8,200	\$8.33	Recommended
Waterfowl Prevention	170 lb	\$90 \$120 one-time cost	\$0.54	Implementing
Inflow and Infiltration Reduction	120 lb 28,000,000 gal water	Unknown	N/A	Planning

Personal Benefits

- Lessons in communicating ideas
- How to 'sell' recommendations
- Importance of organization

Willow River WWTP Primary Pond

