Energy Efficiency Opportunities at Carley Foundry

Aaron Carlson MnTAP Advisors: Jon Vanyo Company Supervisor: Randy Oehrlein

Company Background Carley Foundry •Founded in 1955 by Frank and Lois Carley

•Produce premium aluminum castings for a wide range of production needs

•Use a combination of permanent iron molds, sand molds, and wax molds to create castings

•Located in Blaine, Minnesota

•Have over 400 full time employees

Project Overview

- •Reduce energy consumption at Carley
- •Gain a better understanding of how energy is used

Incentive to change

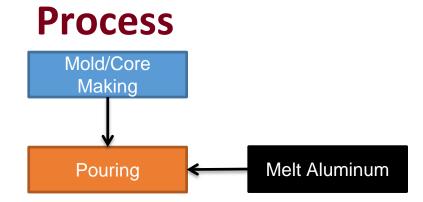
- •Lower operating costs
- •Produce environmentally responsible castings
- •Stay ahead of competition

Process

Mold/Core Making

+ chemical binders -

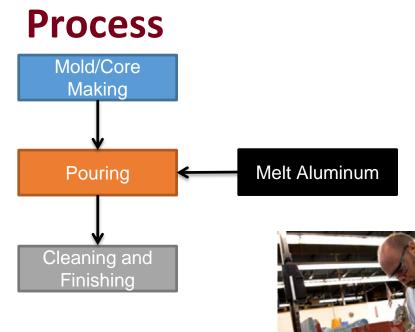
M<u>n</u> TAP

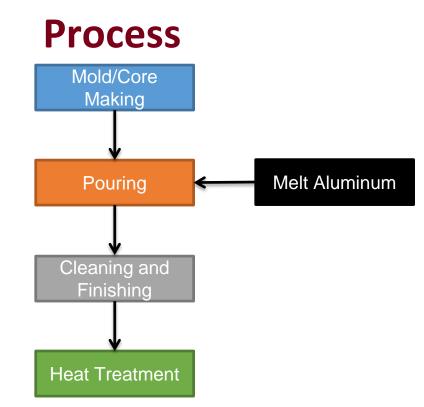

UNIVERSITY OF MINNESOTA

Process

Mold/Core Making

Melt Aluminum



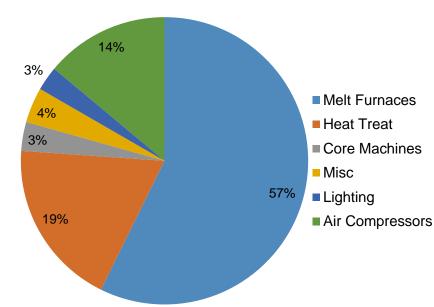


Approach

- •Conduct an energy audit of Carley's main production facility
 - •Estimated energy use for major pieces of equipment

•Experimented on furnaces to find exact power draw and energy consumption

- •Attached amp clamps to furnaces and varied conditions
- Analyzed heat treatment practices and energy consumption of quench tanks
 - •Attached amp clamps to quench tanks, analyzed demand data from Xcel Energy


Assessed compressed air usage

•Inflow was contracted to provide a supply side study from Xcel Energy Funding

Current Electrical Use

Carley Energy Breakdown

•Carley used 24 million kWh last year

•Furnaces will use 50-60% of all electrical energy

Findings of Furnace Experiment and Energy Audit

- •Furnaces are only used during first shift to pour castings
- •Furnaces are held at high temperatures during the night
- •Significant energy savings opportunity
- •Only 50% of the furnaces are used during production hours

Tomporatura	Lid	Lid	
Temperature [F]	Closed	Open	
	[kW]	[kW]	
1200	27.7	-	
1300	30.7	50.9	
1400	33.7	55.9	
1500	36.7	60.8	
Heating	70	-	

Primary Recommendation – Reduce Set Point Temperature During Inactivity

Recommendation	Environmental Savings	Implementation Cost	Annual Savings	Payback Period	Status
Set back furnace set point temperature overnight	2,112,000 kWh annually	\$2,000	\$104,000	Immediate	50% Implemented
Set back furnaces not in use during production hours	220,000 kWh annually	\$0	\$30,000	Immediate	Implemented

Benefits

- •Significantly reduce energy consumption
- •No upfront costs to implementation
- •No impact on production
- •No effect on metal quality

Solutions (examples below)

Recommendation	Annual reduction	Total cost	Annual savings	Payback period	Status
Set back furnaces overnight	2,112,000 kWh	\$2,000	\$104,000	Immediate	50% Implemented
Turn down furnaces not in use during production	220,000 kWh, 100 kW demand	\$0	\$20,000	Immediate	Implemented
Fix leaks identified in leak check	460,000 kWh 50 kW demand	\$8,250	\$35,000	2.5 months	Implementing
Replace vortex coolers with AC coolers	450,000 kWh	\$21,000	\$26,000	10 months	Implementing
Turn off quench tanks when not in use	400,000 kWh	\$0	\$20,000	Immediate	Recommended
Fix furnace insulation	174,000 kWh	\$2,500	\$11,000	5 months	Implementing
Stagger heating of ovens V and W	60 kW Demand	\$0	\$10,000	Immediate	Recommended
Total	4,012,000 kWh, 210 kW demand	\$33,250	\$259,000		

Personal Benefit

- •Gained practical experience
- Project management
- •Problem solving in a real world environment
- •Chance to apply coursework in real world applications

Special thanks and additional contributions

- •Randy Oehrlein
- •Jon Vanyo of MnTAP
- •Travis Bodick
- •Ron Ingalls
- Peter Vinck and Inflow
- •David Baker and the rest of CAE
- •Thermtronix
- •The rest of Carley's employees and operators!

