Water Conservation at DiaSorin Inc.

By: Yohanes Agustinus MnTAP Advisor: Michael Jost Site Supervisor: Kelly Gilliland

UNIVERSITY OF MINNESOTA **Driven to Discover**™

University of Minnesota

Company Background

• DiaSorin Inc. is located in Stillwater, MN

- Headquartered in Italy
- Produces diagnostic kits for ZIKA virus, Vitamin D deficiency, specialty assays
- 260 employees

Incentives for MnTAP Assistance

- Close to Sewer Access Charge (SAC) Unit Limit
 - 74 units
 - Potential for reassessment; ~ \$2,500 per SAC unit
- "Missing water"
 - More than 3 million gallons per year (GPY) of water unaccounted
 - Difficult to reduce water usage
- DiaSorin's Goals
 - Reduce water consumption, realize savings
 - Avoid SAC unit increase

Project Overview

- Goal: 95% of water balance closed, reduce water usage by 10%
 - Took on an energy conservation aspect
- Current water intake: ~ 8,500,000 GPY
- Sanitary sewer outflow: ~ 6,400,000 GPY
- Project was divided into 2 phases (for maximum impact)
 - Phase 1: Identify all water usage sources
 - Phase 2: Identify possible water reduction opportunities

Findings: Phase 1

M<u>n</u> TAP

Findings: Phase 1

Closed water balance

Findings: Phase 2

• Concentrated on hard-hitters (4 areas):

- Vacuum pump (operates 15 hours/day)
- Reverse osmosis (RO) reject
- Domestic water consumption
- Irrigation
- Water softness issues in hot water loop
- Chiller/exhaust also looked at (more energy-side)

1. Vacuum Pump

- Partial recirculation cooling system
- Eliminated leak
 - 889,800 GPY (10% of total water consumption)
 - \$6,200 annual savings
 - \$240 implementation costs
- Dialed down flow rate from 12.2 GPM to 2.8 GPM
 - 2.2 million GPY (27% of total water consumption)
 - \$15,400 annual savings
 - \$300 implementation costs

1. Vacuum Pump

On-demand vacuum

- Minimal usage based on historical trend
- Reduce operating time of vacuum pump
- 3 hours vs 15 hours per day
- Costs:
 - \$320 for 8 pressure gauges
 - \$200 for 2 timers
 - 60 hours labor
- Estimated savings:
 - Energy: 28,100 kWh
 - Water: 522,300 GPY
 - \$5,200 annually

1. Vacuum Pump

- Temperature-based controls
 - Final polish; adjust with weather
- Adjust vent position
 - Automatic monitoring
 - Will adjust with seasonal changes
 - Ease of maintenance checks

University of Minnesota

2. RO Concentrate Water

- ~ 21% of water coming in to deionized water (DI) room is drained
 - RO membranes part of the purification process in DI room
 - ~ 207,000 GPY
 - \$1,500 potential annual savings

University of Minnesota

2. RO Concentrate Water

Irrigation

- 103,500 GPY (~ \$730)
- Seasonal, irrigation controls are far away
- Can drain into pond for irrigation storage; cheaper plumbing
 - Further discussion on greywater reuse needed
 - No exposure exclusion

Toilet flushing

- 207,200 GPY (\$1,500)
- Extensive plumbing needed, in excess of \$15,000

2. RO Concentrate Water

Hot water make-up

- 26,000 GPY (~ \$180)
- ~ \$500 implementation costs, ~ 3 years payback
- Studies on calcium carbonate film formation
 - Emphasize that this is clean water, there is DI rinse (meet those standards, are they necessary AND sufficient)

Characteristic	RO Concentrate	City Water
Hardness (ppm)	0	270
Alkalinity (ppm)	724	244
Total Dissolved Solids, TDS (ppm)	2,584	641

3. Domestic Consumption

- Replace 1.6 gpf with 1.28 gpf toilets (35 pieces)
 - Reduce water flushing by 20%, or ~ 48% of current domestic use
 - 747,500 GPY (~ 8% of overall water consumption)
 - ~ \$5,200 annual savings
 - ~ \$15,600 implementation costs
 - 70 hours for all toilet bowls
 - Change flush-o-meters (\$150 each)
 - Change toilet bowls (\$200 each)
 - ~ 3 years payback

Source: Home Depot

4. Irrigation

- Current irrigation utilizes clock-based scheduling
- Switch to a smart controller
 - Rachio Smart Sprinkler Controller, detects changes
 in weather patterns
 - Implementation costs: ~ \$300
 - City of Woodbury pilots averaging more than 50% water savings
 - 403,800 GPY, payback period of 6 months (summer)

Source: Rachio

5. Hot Water Hardness Control

- Problems with hardness in the hot water system
 - Reaches 180 ppm over weekends
 - Wastes ~ 300 gal in purge every week or 15,600 GPY, also 0.5 man-hours
- Faulty check valves identified as main issue
 - Replace valves
 - Monitor hardness to anticipate issues
 - Eliminate mixing valves in toilets

6. Chiller/Exhaust Optimization

Reducing exhaust from fume hoods

- Currently there are several fume hoods that exhaust 24/7
- There is also potential for exhaust to be left on
- Better temperature and pressure regulation
- May also save water in cooling system
- Install timers to turn on exhaust
- Reconfigure when exhaust fans run
 - Autoclave
 - ~ \$1,000 purely from heat losses in winter
 - Factor in positive pressure regulation
 - 7 other exhaust points to optimize

Summary Table

Recommendations	Waste/Water/Energy Reductions Per Year	Implementation Cost	Net Savings Per Year	Payback Period	Status
Eliminate leak (vacuum)	889,800 gallons	\$240	\$6,200	0.5 months	Implemented
Reduce flow rate through vacuum pump	2,200,000 gallons	\$300	\$15,400	1 week	Implemented
On-demand vacuum pump	522,300 gallons 28,100 kWh	\$3,400	\$5,200	7.8 months	Implementing
Reuse RO concentrate as hot water make-up	26,000 gallons	\$500	\$180	3 years	Needs Further Analysis
Install ultra-low flush toilets	747,500 gallons	\$15,600	\$5,200	3 years	Recommended
Optimize irrigation	403,800 gallons	\$300	\$570	6.4 months	Recommended
Hot water hardness control	15,600 gallons	\$1,800	\$1,400	1.2 years	Implementing
Chiller/Exhaust optimization	<1,300 therms Water and Electrical	Needs Further Analysis	Needs Further Analysis	Needs Further Analysis	Needs Further Analysis
Total	4,805,000 gallons (57%) 28,100 kWh	\$12,400	\$32,900	N/A	N/A
Mn TAP					

Next Steps

- In process of determining best course of action for RO reject
- Obtain detailed breakdown of DI water use
- Installation of timers for vacuum system and fume hoods
- Installation of faucets and new check valve in Building 3

Personal Benefits

- Communication and teamwork
- Learn about non-technical issues affecting design decisions
- Dealing with complex data
- Environmental regulations
- Exposure to new types of unit operations

Questions?

