²² Energy Efficiency at Advanced Extrusion

By: Tiger Rost MnTAP Advisors: Paul Pagel Advanced Extrusion: Mathias Weber, Brandon Eid

UNIVERSITY OF MINNESOTA Driven to Discoversm

Company Background

- Business in Rogers, MN
- Specializes in polyethylene terephthalate (PET) extrusion
- PET sheets for food package manufacturing
- 14,500,000 kWh, 68 employees

EXTRUSION

Process Description

Source: Noon-intl.com

Source: Alibaba.com

Source: Millikenchemical.com

M<u>n</u> TAP

Project Overview

- Recommendations help reduce energy and keep company competitive
- Lower energy consumption reduces state generation needs, utility payer costs
- Xcel, Graphet already providing data
- MnTAP opportunities help utilize information

Energy consumption

- 30 million pounds produced per year
- \$1,100,000 spent on electricity annually
- Extrusion and drying dominate electrical costs

Recommendation categories

- Lighting
- Heat losses and leaks
- Motors and drives
- Production setting optimization
- Equipment line upgrades
- Miscellaneous upgrades

Lighting

Recommended changes:

- Replace 32W fluorescents with 15W LED lamps
- Motion sensors (part of lighting retrofit)
- Emergency lighting (batteries)
- Exterior lighting

Lighting savings

Recommendations	Waste/energy reduced	Imple cost (ementation w/ rebates)	Annual savings	Payback period	Status
Lighting retrofit	374,000 kWh	\$	27,700	\$ 29,900	11 months	Implementing
Exterior lighting	57,700 kWh	\$	15,900	\$ 4,620	3.5 yrs	Recommended
Emergency lighting	N/A	\$	18,600	N/A	N/A	Implementing

Heat losses and leaks

Recommended changes:

- Fixing heat losses and leaks
- Fixing compressed air and vacuum system leaks
- Reducing heat loss and dust from infrared dryer

Heat losses and leaks continued

Two parts:

- Insulation losses Losing heat from conduction
- Mass transfer

Heating entirely new air from low temp. to process temp.

• Dryers cause most heat loss

Source: Novatec

Heat losses and leaks savings

Payback periods:

- Averages to half a year in payback
- Process air leaks the most costly

Recommendations	Waste/energy reduced	lmp cost	lementation (w/ rebates)	Annual savings	Payback period	Status
Heat losses, leaks	622,000 kWh	\$	20,000	\$ 49,800	9 months	Implementing
Compressed air,						
vacuum leaks	337,000 kWh	\$	4,000	\$ 27,000	2 months	Implementing
Infrared dryer heat						
loss, leaks	178,000 kWh	\$	2,000	\$ 14,300	2 months	Implementing

More efficient motors and drives

Motors

- Replace extruder DC motors with AC
- Attach VFDs to crystallizers
- Exchange motors for more efficient models
- Address grinding
- Change Line 6 DC to AC

Source: Baldor

Adding more efficient motors and drives

Motors

- At the right size: Savings through efficiency upgrades
- Oversized:
 - Savings through re-sizing motor or drives
- Variable Frequency Drives (VFD) Putting VFD will de facto "re-size"
- Larger motors have lower power factor at lower loads

variablefrequencydrive.org

More efficient motors and drives

Motors

• Ideal motor load around 75-80%

Source: Toshiba Lighting Systems

Source: Physics Stack Exchange

Motor and drive savings

Recommendations	Waste/energy reduced	Impleme cost (w/ r	entation ebates)	Annual savings	Payback period	Status
Replace extruder						
DC motors with AC	763,000 kWh	\$	21,300	\$ 61,000	4 months	Recommended
Attach VFDs to						
crystallizers	898,000 kWh	\$	18,700	\$ 71,800	3 months	Implementing
Convert motors to						
higher efficiency	181,000 kWh	\$	48,600	\$ 14,500	3.4 yrs	Recommended
Address grinding	71,200 kWh	\$	2,070	\$ 17,100	2 months	Recommended
Convert line 6 DC to						
AC motors	173,000 kWh	\$	4,200	\$ 13,800	4 months	Recommended

Production setting optimization

Recommended changes:

- Lengthening regeneration cycle of dryer beds
- Changing crystallization process

Production savings

Paybacks:

- Instantaneous paybacks
- Requires making process changes to produced material
- Process changes risk altering material properties

Recommendations	Waste/energy reduced	Implementation cost (w/ rebates)	Annual savings	Payback period	Status
Lengthen dryer regen cycles	219,000 kWh	\$-	\$ 17,600	Instant	Recommended
Changing crystallizing process	262,000 kWh	\$-	\$ 21,600	Instant	Recommended

Equipment line upgrades

Recommended changes:

- Using compounders to create pellets from raw materials Alternatively, combine PET with additives
- High vacuum twin screw extrusion (HVTSE)

Source: PTi Extruders

Equipment line savings

Compounding:

- Waiting on specific quotes for compounding costs
- Compounding can save \$9,000,000 potentially for PET
- Self-compounding eliminates mark-up

Material costs dominate, not energy

Equipment line savings

High vacuum twin screw extrusion (HVTSE):

- HVTSE can reduce energy costs by 30-40% by eliminating need for drying and crystallization
- HVTSE saves \$405,000 annually (5,000,000 kWh), but costs \$2,500,000 per line installation (\$10,000,00 total) Improved throughput, material variety

Miscellaneous

Recommended changes:

- Curtailment
- Improving dust collection and ventilation

Miscellaneous

Paybacks:

- Other opportunities are instantaneous
- Many do not save energy, but address finances

Recommendations	Waste/energy reduced	Implementation cost (w/ rebates)	Annual savings	Payback period	Status
Curtailment	N/A	\$ -	\$ 62,600	Instant	Recommended
Improving dust					
collection	N/A	\$ -	N/A	N/A	Implementing

Conclusions

Recommendations	Waste/energy reduced	Implem cost (w/	nentation rebates)	Annual savings	Payback period	Status
Lighting	432,000 kWh	\$	62,200	\$ 34,500	1.8 yrs	Implementing
Heat losses and leaks	1,140,000 kWh	\$	26,000	\$ 91,000	4 months	Implementing
drives	2,090,000 kWh	\$	94,000	\$178,000	7 months	Implementing
Changing production settings	481,000 kWh	\$	-	\$ 39,200	Instant	Recommended
Miscellaneous upgrades	N/A	\$	-	\$ 62,600	Instant	Implementing
Totals	4,143,000 kWh	\$	182,200	\$405,300		

Personal Benefits

- Learned how to quantify opportunities into tangible paybacks
 - Developed skills to pull information together from different sources
 - Discovered the general processes in the background that drive energy consumption
 - Practiced time management

Questions?

