Water Conservation at Agseptence Group

Ryan Pauly

MnTAP Advisor: Jane Paulson On-site Supervisor: Paul Johnson

University of Minnesota

Driven to Discoversm

Company Overview

- Headquartered in Germany
- Collection of water technology companies
- Johnson Screens
 - New Brighton
 - 1904 by Edward Johnson
 - Continuous slot wire wrapped screen
 - Industrial filters and water wells

Products

- Continuous wire wrapped screens
 - Water intake
 - Wells

Mh

• Decoration

Motivations For Change

Current situation

- 10 million gallons of water per year
- High levels of chromium
- Water recycling systems need improvement
- Goals
 - Reduce water usage by 30%
 - Recycled water for NSF products

Reasons for MnTAP Assistance

• Audit water usage

- Evaluate largest sources of consumption
- Evaluate current recycling systems
- Evaluate strategies to:
 - Improve recycling systems
 - Reduce source water
 - Remove chromium from recycled water
- Determine savings for final recommendations

Approach

- Investigate water consumption processes
 - Map water flow
 - Quantify water usage
- Evaluate current recycling systems
 - Identify successes and shortcomings
 - Understand shortcomings
- Identify material flow

Approach

- Identify top water usage areas
 - Screen Machines > Wire Mill
- Blueprint for recycling system
- Chromium removal
- Address remaining areas

Approach

- Identify top water usage areas
 - Screen Machines > Wire Mill
- Blueprint for recycling system
- Chromium removal
- Address remaining areas

Contaminated Water

- Small particulates and burnt oil
- Oil-water emulsion
- Current recycling system
 - Oil-water coalescing separator
 - Flow pattern in reservoir
 - Centrifuge

Recycling System

- Proposed system: centrifuge and ultrafiltration
 - Centrifuge: particles > 74 microns
 - Ultrafiltration: oil-water emulsion
- Pilot system
 - 4 machines

Recommendations: Recycling System

Recycling System	Water Reduced Implementation ((gallons per year) Cost		Cost Savings (per year)	Payback Period	Status
Large Diameter Implemented	940,000	\$4,000	\$7,000	6.9 months	Implemented*
Large Diameter Recommended	1,170,000	\$6,000	\$8,600	8.4 months	Recommended
Small Diameter	4,000	\$4,000	\$30	130 years	Recommended
Total	2,100,000	\$14,000	\$15,600	10.8 months	

*Additional ultrafiltration columns need to be added

Chromium Removal

- NSF certification
- Proposed solution: ion exchange
 - Regenerable resin
 - Pilot scale system
 - Colorimeter

Chromium Removal

- Process flow diagram
- Multiple location options
 - Following ultrafiltration
 - Next to reservoir
- Additional cost for automation
- No downtime

Recommendations: Chromium Removal

Ion Exchange Location	Water Reduced (gallons per year)	Implementation Cost	Cost Savings (per year)	Payback Period	Status
Next to Reservoir	120,000	\$4,500	\$870	5.2 years	Recommended
Following Ultrafiltration	120,000	\$2,700	\$870	3.1 years	

Fine Wire Screen Machines

- Electronics cooling water
- Quenching water
- Solution
 - Closed loop system with chiller
 - Recycling system

Recommendations: Fine Wire

Waste Reduction Option	Water Reduced (gallons per year)	Percent Reduction	Implementation Cost	Cost Savings (per year)	Payback Period	Status
Closed Loop Cooling Water	780,000	100%	\$4,500	\$4,700	11.5 months	Recommended
Recycling System	390,000	95%	\$3,700	\$2,900	15.3 months	Recommended
Total	1,170,000		\$8,200	\$7,600	13 months	

Quenching Water

- Excess water applied to weld
- Limited control
- Solution
 - Globe valves and flow meters

Recommendations: Quenching Water

Quenching Water Reduction	Water Reduced (gallons per year)	Percent Reduction	Implementation Cost	Cost Savings (per year)	Payback Period	Status
With Recycling Systems	82,000	29%	\$3,300	\$600	5.5 years	Recommended
Without Recycling Systems	175,000	29%	\$3,300	\$1,700	2 years	

Wire Mill

- Wire washing stage
- Minimal contaminants in samples
- Air wipe in Use
- Suggestion
 - Shutoff water
 - Further testing necessary

Recommendations: Wire Mill

Waste Reduction Option	Waste Reduction Option (gallons per year) Cos		entation Cost Savings ost (per year)		Status
Cleaning Water in Wire Mill	2,070,000		\$15,400		Testing Required

Summary

Waste Reduction Option	Water Reduced (gallons per year)	Percent Reduction	Implementation Cost	Cost Savings (per year)	Payback Period	Status
Large Diameter Implemented	940,000	95%	\$4,000	\$7,000	6.9 months	Implemented*
Large Diameter Recommended	1,170,000	95%	\$6,000	\$8,600	8.4 months	Recommended
Small Diameter	4,000	95%	\$4,000	\$30	130 years	Recommended
Ion Exchange from Reservoir	120,000	100%	\$4,500	\$870	5.2 years	Recommended
Fine Wire Screen Machines	1,170,000	> 95%	\$8,200	\$7,600	13 months	Recommended
Cleaning Water in Wire Mill	2,070,000			\$15,400		Testing Required
Quenching Water	82,000	29%	\$3,300	\$600	5.5 years	Recommended
Total (Excluding Wire Mill)	3,500,000	37%	\$30,000	\$25,000	14.4 months	

*Additional ultrafiltration columns need to be added

Personal Benefits

- Interaction with wide variety of people
- Application of principles learned in school
- Design and construction of recycling system

Questions?

