Compressed Air Energy and Water Reduction Phillips Distilling Company

Nathaniel Scherer Project Advisor: Michelle Gage Company Supervisor: Larry Jurik

UNIVERSITY OF MINNESOTA Driven to Discover™

Phillips Distilling Company (Princeton, MN)

- Produce several top brands of alcoholic beverages
 - UV
 - Phillips
 - Prairie
 - Many more!
- Also import wine and spirits
- Ship ~7 million cases/year

https://www.thespiritsbusiness.com/2015/01/diageo-exec-joins-uv-vodka-producer-as-ceo/ http://chilledmagazine.com/industry_news-detail/phillips-distilling-company-announces-international-expansion-for-uv-vodka

Incentive for Change

"One Team: G.R.E.E.N."

- Sustainability committee
- Environmental responsibility is economical
- Biggest reduction opportunities:
 - Compressed air
 - Water use/discharge

/rit.edu.kgcoe.ise/files/images/Sustainable%20graphic.jpg

MnTAP Assistance

Compressed air opportunity

- Compressed air audit (rebate from Connexus)
- Compressed air maintenance plan
 - Detect, tag, record, and fix all leaks
- Identify compressed air costs
- Improve compressed air system efficiency

Approach (compressed air)

- Study the system
- Breakdown energy usage
- Identify opportunities
- Develop recommendations

Process overview (compressed air)

Compressed air usage

Demand distribution:

Proper use 41%

Reduction opportunity 59%

1. Compressed air system maintenance

Annual energy reduction	Implementation cost	Annual savings	Payback period	Status
158,000kWh	\$750	\$15,500	2 weeks	Implementing

- Used leak detector to identify 35 leaks
 - ~125CFM demand (158,000kWh/yr)
 - Fixed 54% of leaks, plans to fix remaining
- Created compressed air maintenance program

2. Closing open equipment valves

Annual energy reduction	Implementation cost	Annual savings	Payback period	Status
150,000kWh	<\$6,000	\$14,600	<5 months	Implementing

- Develop procedures for closing air valves
- Install solenoid valves where necessary

3. Pressure/flow controller

Annual energy reduction	Implementation cost	Annual savings	AnnualPaybacksavingsperiod	
38,000kWh	\$4,000	\$3,700	1.1 years	Recommended

- Control pressure in plant
- Reduce compressor pressure from 112psig to 100psig

4. Regulating air use for tank agitation

Annual energy reduction	Implementation cost	Annual savings	Payback period	Status
31,000kWh	none	\$3,000	-	Recommended

- Raise awareness
- Standardize procedures
- Regulate and time air use

Compressed air recommendations

Recommendation	Annual reduction	Total cost	Annual savings	Payback period	Status
Leak prevention program	158,000kWh	\$750	\$15,500	2 weeks	Implementing
Closing equipment valves	150,000kWh	<\$6,000	\$14,600	<5 months	Implementing
Pressure/flow controller	38,000kWh	\$4,000	\$3,700	1.1 years	Recommended
Regulating agitation air	31,000kWh	-none-	\$3,000	-none-	Implementing
Electric bag inflators	11,000kWh	\$2,300	\$1,000	2.3 years	Recommended
Total	388,000kWh	\$13,000	\$38,000	4 months	

MnTAP Assistance

Water

- High water discharge (nature of process)
- Expensive to dispose
- Find ways to **reduce** and **recycle** water

ps://d3583ivmhhw2le.cloudfront.net/images/uploads/blog/RecyleWaterDripping_207131596.jpg

Approach (water)

- Study the system
- Sample wastewater streams
- Develop strategies to reuse wastewater

Process overview (water discharge)

Recommendations (water)

1. New rotating spray balls

Annual wastewater reduction	Implementation cost	Annual savings	Payback period	Status
~150,000gal	\$2,500	\$9,000 to \$16,000	<4 months	Recommended

- ~50% less water per rinse
- Easy to implement

Recommendations (water)

2. Reusing low-strength wastewater

Annual water reduction	Implementation cost	Annual savings	Status
~160,000gal	Needs further analysis	\$10,000 to \$18,000	Needs further analysis

- Final tanks rinses are very clean
- Still investigating where this water can be reused

Water reduction recommendations

Recommendation	Annual reduction	Total cost	Annual savings	Payback period	Status
Reusing rinse water	280,000gal water	Unknown	>\$10,000	Unknown	Investigating
New spray balls	150,000gal water	\$2,500	>\$9,000	<4 months	Recommended
Total	430,000gal water	Unknown	>\$19,000	Unknown	Investigating

Company benefits

Recommendation	Annual reduction	Total cost	Annual savings	Payback period	Status
Compressed air total	388,000kWh	\$13,000	\$38,000	4 months	Implementing
Water total	430,000gal water	Unknown	>\$19,000	Unknown	Investigating
Insulating boiler pipes	10,000therms	\$2,200	\$6,000	4 months	Implementing

My experience

- Industry-tailored sustainability solutions
- Production manufacturing practices
- Communication
- Accountability

Thank you!

