Energy Reduction Analysis at New Prague Wastewater Treatment Facility

Emily Wen MnTAP advisor: A.J. Van den Berghe

On-Site Supervisor: Scott Warner

UNIVERSITY OF MINNESOTA Driven to Discover™

University of Minnesota

Company Overview

- Remove contaminants from wastewater
- 7,700 residents
- Regulated by Minnesota Pollution Control Agency
- Upgraded in 2010

University of Minnesota

Incentives to Change

- Operating budget covered by water and sewage fees
 - Have exceeded budget
 - Excess covered in city taxes
- Next MPCA permit may include more requirements
 - Require additional equipment
 - Minimize energy increase with optimizing

Project Overview

1. Characterize energy consumption plant-wide

- Identify energy-intensive equipment
- Observe yearly consumption trends

2. Quantify scrubber/HVAC reductions

- Determine suitable # air changes per hour (ACH)
- Predict savings for reduced exhaust fan speeds

3. Assess Biological Aerated Filter (BAF) blower reduction

- Dissolved oxygen aeration model
- 4. Ultrasonic leak study
 - Find compressed air leaks
- 5. Lighting audit
 - Determine suitable LED replacements and resulting savings

Characterize Energy Consumption

EPA Energy Assessment Tool

- Track energy usage for small wastewater facilities
 - Excel spreadsheet
- Method:
 - Collect utility bills from 2014-2017
 - Collect motor specification data
- Focus on electricity reduction

Utility	Site Utility Use	Site Utility Costs	% of Costs
Electricity	2,183,200 kWh	\$166,663	76%
Natural Gas	79,167 CCF	\$48,180	22%
Water & Sewer	870,000 GAL	\$4,100	2%

University of Minnesota

Top Electrical Energy Use Systems

- #1 Odor Control
- #2 Sludge Handling
- **#3 BAF Treatment**
- #4 Non-process HVAC
- #5 Internal Plant Pumping
- Balance of Plant Identified
- Balance of Plant Unidentified

Quantify scrubber/HVAC reductions

M<u>n</u> TAP

Option 1.1: 7.2 to 4.9 ACH

Energy reduced (per year)	Implementation Cost	Cost Savings (per year)	Payback Period	Status
106,000 kWh 150 therms	\$0	\$8,100	Immediate	Implemented

Option 1.2: Swoobiosolids and F fan

- BAF and biosolids of different models
 - Undetermined volumetric
- Undetermined labor costs
 - Likely a week
- Requires further inve Evoqua engineers

bbers ar

n by

Biosolids scrubber fan

11

Assess BAF Blower Reduction

UNIVERSITY OF MINNESOTA

12

Biological Aerated Filter (BAF)

Secondary treatment

- Removes total suspended solids (TSS), ammonia, and carbonaceous biological oxygen demand
- Microbes require oxygen
 - 0.5-2 mg/L dissolved oxygen (DO)

Fig. 2 BAF schematic by Veolia/Kruger

Option 2.1: Adjust controls settings

- Reduces blower operating hours
- New Prague's optimal set point at 1.5 gallons per minute per sqft

Influent Load Contro	ol			
Constant Number Of Ce	lls In Filtration			
	Number Of Cells In Filtration:	1	4 Ea.	4
🔵 Constant Load	Biostyr Filter Velocity 1:	0	1.5 GPM/Ft ²	4
	Minimum Number Of Cells:	1	1Ea.	4
	Maximum Number Of Cells:	1	4 Ea.	4

New Prague SCADA set point screen shot

Option 2.1: Adjust controls settings

Energy reduced (per year)	Implementation Cost	Cost Savings (per year)	Payback Period	Status
148,000 kWh	\$0	\$11,200	Immediate	Implemented

Option 2.2: Install VFDs to BAF Blowers

- Reduces power consumption during operation
- Price to be determined
 - Likely 4-5 years
 - Rebates available
- Eliminate inrush
 - Reduces electric costs
 - Increase blower lifespan

Allen Bradley PowerFlex 753, the proposed VFD for installation

Option 2.2: Install VFDs to BAF Blowers and target 4.0 mg/L DO

UNIVERSITY OF MINNESOTA

17

Option 2.2: Install VFDs to BAF Blowers and target 4.0 mg/L DO

Energy reduced (per year)	Implementation Cost	Cost Savings (per year)	Payback Period	Status
107,000 kWh	TBD	\$8,100	4-5 years	Recommended

Ultrasonic Leak Study

8 Leaks Found

Photo credit: Marcus Hendrickson

University of Minnesota

6 Additional Leaks Found

Option 3.1: Seal compressor leaks

Energy reduced (per year)	Implementation Cost	Cost Savings (per year)	Payback Period	Status
13,820+ kWh	\$220	\$1,050+	2.6 months	In progress
	RECTORSEAL			

Mn

Lighting Audit

LED Technology Constantly Improving

- New Prague WWTF lighting
 - 112 lights are on 24/7
 - 4 ft 32 watt fluorescent lights

• LED refits

- Longer lifespan (50,000 hours)
- Lower power consumption (18 watt)
- Compatible with ballasts

Main hall lighting

Stairwell lighting

University of Minnesota

Option 4.1: Upgrade lights to LED

Energy reduced (per year)	Implementation Cost	Cost Savings (per year)	Payback Period	Status
28,600 kWh	TBD	\$2 <i>,</i> 100	2-3 years	Recommended

LED exterior fixture in progress of installation

Potential Savings Summary

Recommendations	Annual Reduction	Implementation Cost	Annual Savings	Payback Period	Status
Reduce ACH to 4.9	106,000 kWh 150 therms	\$0	\$8,100	-	Implemented
Change controls and reduce DO to 4.0 mg/L using VFD	254,740 kWh	TBD	\$19,300	4-5 years	Recommended
Seal leaks	13,820+ kWh	\$220	\$1,050+	2.6 months	In Progress
Upgrade to LED	28,600 kWh	TBD	\$2,100	2-3 years	Recommended
Totals	403,000 kWh 150 therms	TBD	\$30,550	TBD	-

26

Future recommendations

- Reduce scrubber and make-up air unit to 4.0
 - Reduces 125,000 kWh and \$9,500
- Study VFD installation on main lift station pump effects
 - Eliminate inrush throughout facility
 - Prolong motor life
- Sludge aeration blower
 - Possible upgrades and installations

Personal Benefits

- Immersion in wastewater
- Put ChemE skills to the test
 - Need more MechE and EE background
- Communicating with vendors
- Deeper appreciation for operation & maintenance
- Learn about considerations in engineering & design
- "I don't know"

Special thanks to the following

AJ Van den Berghe **Scott Warner** John Granlund Adam Jirak **Joe Wagner** Nathan Landwehr **Marcus Hendrickson** Kim Lee Lora Novotny **Jon Peterson Doug Swanson Devang Pujara**

Daryl Bond Mark Drake Ryan Cairl Jon Vanyo **Randy Keranen Daryld Miller Chad Lunder Eric Bennett** Jeff Boumeester **Bruce Stasney**

Thank you for listening!

Questions?

This project was funded in part by Southern Minnesota Municipal Power Agency

University of Minnesota

City of New Prague Wastewater Plant Flow Diagram

M<u>n</u> TAP

UNIVERSITY OF MINNESOTA³¹

Air changes per hour

$$ACH = \frac{Q}{V} \times 60 \frac{min}{hr}$$

Scrubber	Volume served [ft ³]	Scrubber Volumetric Flow Rate [ACFM]	ACH [hr ⁻¹]
BAF Upper Gallery	79,250	9,500	7.2
Pretreatment	125,212	10,000	4.8
Biosolids	114,973	7,600	4.0

University of Minnesota³²

Fan affinity laws

$$\frac{Q_1}{Q_2} = \frac{n_1}{n_2}$$
$$\frac{\Delta P_1}{\Delta P_2} = \left(\frac{n_1}{n_2}\right)^2$$
$$\frac{P_1}{P_2} = \left(\frac{n_1}{n_2}\right)^3$$

UNIVERSITY OF MINNESOTA³³

Calculating motor frequency

- 1. Calculate new Q
 - $Q = \frac{ACH}{V \times 60 \frac{min}{hr}}$
- 2. Determine new static pressure using performance curve
 - $SP_{4.9ACH} = 8.93 \times 10^{-8} Q_{4.9ACH}^2 4.32 \times 10^{-6} Q_{4.9ACH} 0.005 = 2.47$
- 3. Use fan affinity law between speed and pressure
 - $RPM_{4.9 ACH} = \left[\frac{SP_{4.9 ACH}}{SP_{7.2 ACH}}RPM_{7.2 ACH}^2\right]^{\frac{1}{2}}$
- 4. Convert speed to frequency

$$f = \frac{RPM_{4ACH} \times 1}{120}$$

Scrubber fan performance curve

University of Minnesota³⁵

New Prague Effluent Requirements

Parameter	Limit (mg/L)	Limit Type	Effective Period
Dissolved Oxygen (DO)	7	Calendar Month Minimum	Jan-Dec
Carbonaceous Biological Oxygen			
Demand (CBOD), 05 Day	5	Calendar Month Average	Jan-Dec
Nitrogen, Ammonia, Total	7.7	Calendar Month Average	Dec-Mar
Nitrogen, Ammonia, Total	1.3	Calendar Month Average	Apr-May
Nitrogen, Ammonia, Total	1.0	Calendar Month Average	Jun-Sep
Nitrogen, Ammonia, Total	1.9	Calendar Month Average	Oct-Nov
Total Suspended Solids (TSS)	30	Calendar Month Average	Jan-Dec

UNIVERSITY OF MINNESOTA³⁶

SCADA Calculations

$$V_f = \frac{Q_{inf} + Q_{BW} - Q_{sludge}}{A_{cell} + N_f}$$

$$N_F = \frac{Q_{in}}{A_{cell} + V_f}$$

UNIVERSITY OF MINNESOTA³⁷

Oxygen transfer rate

Vn

$$\frac{dC}{dt} = k_L a \cdot (C_{sat} - C)$$

Zhang, Wei & Li, Zheng Jian & Agblevor, Foster. (2005). Microbubble fermentation of recombinant Pichia pastoris for human serum albumin production. Process Biochemistry. 40. 2073-2078. 10.1016/j.procbio.2004.07.022.

UNIVERSITY OF MINNESOTA³⁸