Water Conservation Improvements CertainTeed Roofing

Alex Witte CertainTeed Supervisor: Pat Heppert

University of Minnesota

Driven to Discoversm

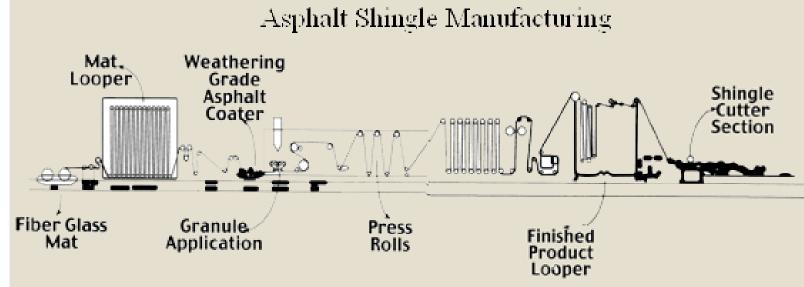
MnTAP Supervisor: Karl Dewahl

The Dealth -

Company Background

- Saint Gobain- Parent company for CertainTeed
 - World wide company with 185,364 employees
 - CertainTeed-more than 5,700 employees and more than 60 manufacturing facilities

Shakopee facility


- Produces roofing and roofing materials.
- It features three lines
- This project features the third line only which is their main production line

How Shingles are Made

- Dry end fiberglass and looper
- Asphalt and granules
- Cooling
- Finished looper
- Cutter
- Reapplication
- Packaging

http://www.inquiring-eye.com/anatomy/roof.htm

Motivations For Change

- Environmental impact savings
- Water reduction
- Corporate sustainability goal
- Lost production

http://www.energyandcarbonmanagement.com/media/1058/list110.jpg

Corporate Sustainability Goals

3 Year Goals 2017-2019

2016 Baseline

Energy consumption: - 5% (MWh/NSP) Total CO₂ emissions: - 7% (MTCo2/NSP)

2025 Goals 2010 Baseline

Energy consumption: -15% (MWh/NSP) Total CO₂ emissions: -20% (MTCo2/NSP)

Water Withdrawal: - 20% (M3/NSP) Water Discharge: - 20% (M3/NSP)

Water discharge: - 80% (M3/NSP) Long-term: Zero industrial water discharge in liquid form

Non-recovered waste: - 15% (Ton/NSP)

Non-recovered waste: - 50% (Ton/NSP) Long-term: Zero non-recovered waste

Project Goals

Temperature goals

At the cutter it must be below 95 ° Goal is 80 °

Improving the Web Cooling/Drying While Reducing Water and Energy Usage

Project Overview

- Reduce Water Use
 - Reduce waste
 - Reduce usage
 - Calculate current heat losses
 - Test and research new options

Create Better Cooling

- Make production faster
- Reduce maintenance
- Reduce operator error
- Create better product

M<u>n</u> TAP

Approach

- Determine savings associated with final recommendations
- Review
 - Water consumption
 - Amount of wasted product
 - Energy consumption
- Create process flows and show options

Possible Improvements

- Cooling tower overflow
- Nozzle overspray
- Maintenance of cooling system
- Better air exchange

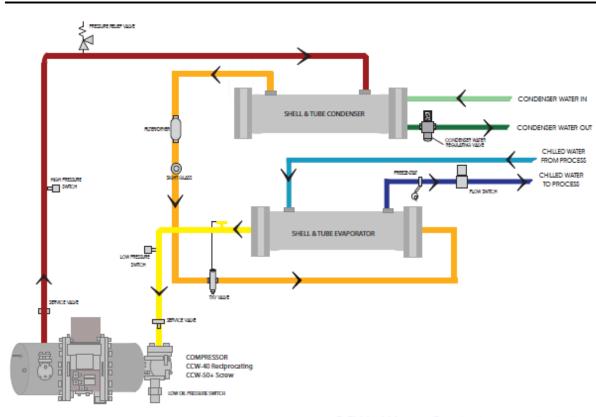
https://d3fgmcoixbear.cloudfront.net/s3fs-public/colors/308747-LM-MaxDefWeatheredWood.JPG

Water Consumption

- The main resources that where dealt with in this waste reduction project is water
- Water costs \$.0027 per gallon and is the highest priority of resource for CertainTeed

	Gallons	Dollars	Gallons	Dollars
Average Yearly Use	27,026,000	\$49,919	18,500,000	\$15,984
Total Cost	\$ per gallon .0027			

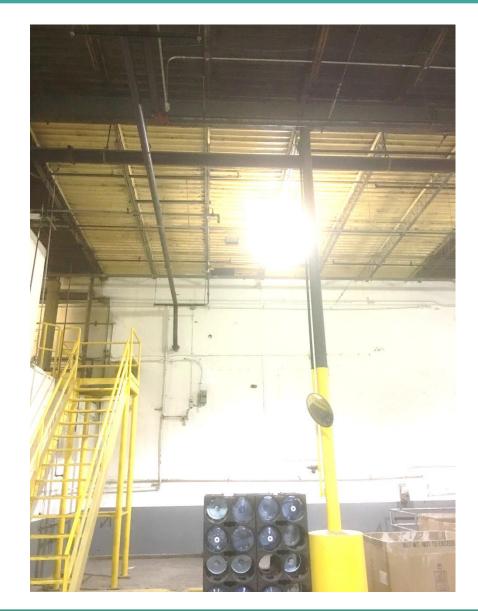
Options


- Water reduction
 - Chiller
 - Extending rolled cooling
 - Larger tank
 - Reuse of warm wastewater for use in evaporative cooling

- Increased Cooling
 - Maintenance of parts
 - Creating an air plenum
 - Makeup air
 - Air flow Curtains

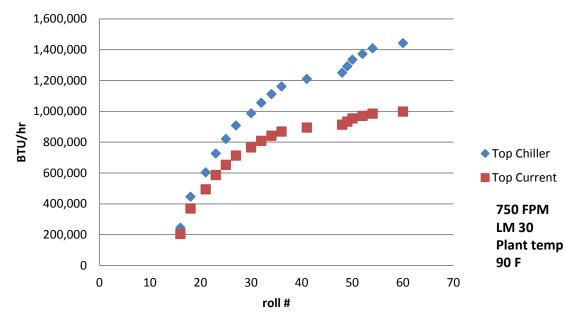
Recommendation: Chiller

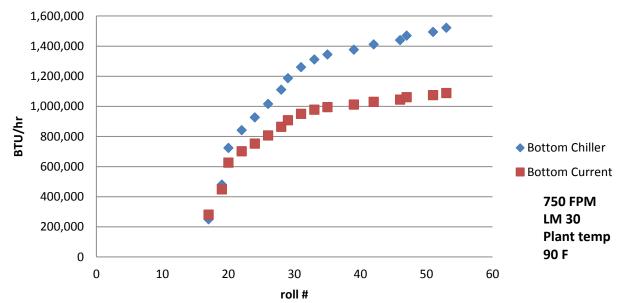
- Best way that limits water use in cooling section
- Run cost \$24,200
- Purchase cost \$161,400
- Install cost \$153,600
- Benefits:
 - Drops water usage 1.8 GPM or 21 degree temp drop
 - Gains back lost production up to \$159,000



CCW - Water Cooled Central Chiller

Chiller


- Sizing 205 tons of cooling will cover all of the cooling for line 3
- Water cooled condenser cooled off of current cooling tower.
- 60 degree average cool water temp, possibly lower
- Works best when combined with additional rolls
- Best location next to quality room


Additional heat loss

Q chiller compared to Current Cumulative Top

Btu/hr current	Btu/hr chiller		
2,098,566	2,962,947		

Q chiller compared to Current Cumulative Bottom

possible water	GPM	temp drop	
saved		degrees F	
chiller	2	21	

M<u>n</u> TAP

Additional rolls

- Is the chiller enough?
- Additional cooling enables better product
- Higher cost vs saving water
- Lowers run cost of chiller

Additional rolls

- Add 18 rolls
- Further eliminates water use

	Btu/hr	Water saved	Temp drop	
		GPM	degrees F	
Heat removed	195,000	.7	8	
with chiller				
new rolls				

Tank Control

- Overflow
 - Water over flows pit at around 14 GPM constantly during production
 - Pump schedule
- Air compressors
 - Dump water from single pass
 - Doesn't return all water
- Solution
 - Put a return water control system on the pit level and send all water back to the compressors to eliminate overflow and only refill pit sump pit as makeup as necessary

Larger Tank

- A second option- larger tank extension
- Addresses the pumping schedule problems
- Allows for the tank to deal with pumping schedules
- Doesn't address air compressor overflow.
- Still will overflow in cases

Options table

Waste Reduction Option	Waste Reduced (per year)	Implementation Cost	Cost Savings (per year)	Payback Period	Status
Water Reduction					
Chiller for recirculating water to the cold rolls	946,000 gal water	\$ 315,000	Water \$2500 Production Gain Up to \$159,000	2.3 Years	Recommended
More rolls for cooling with chiller	(Amount dependent on chiller temp) 367,920 gal water	\$ 162,000 for rolls + 162,000 install	Water (dependent on chiller temp) \$678 Production Gain Up to \$159,000	4.3 years	Further investigation needed
Larger holding Tank and reducing overflow	7,400,000 + gal water	\$100,000	\$13,600	7.3 Years	Recommend

Personal gains

- How to meet with professionals
- How to scope bid and design projects
- Exposure to Industrial equipment
- Data collection
- Seeing real life calculations
- Communicating between multiple people

http://www.wolfcreekcompany.com/wp-content/uploads/2017/04/customer-service.jpg