Process Engineering: Paint Transfer & Energy Efficiency Nordic Ware, St. Louis Park Roopesh Pushpala

MnTAP Advisor: Paul Pagel Nordic Ware Supervisors: Bette Danielson, Tony Fisher

UNIVERSITY OF MINNESOTA Driven to Discover℠

University of Minnesota

Company Background

- Leading manufacturer of kitchenware products since 1946
- Cookware manufacturer
 - Metal fabrication
 - Coatings applications
 - Plastics molding

• Wide range of products including castings, formed and molded products

https://www.nordicware.com/

University of Minnesota

Project Overview

- Opportunities to increase transfer efficiencies of the spray painting
- Process improvement through the coating line
- Optimize the washer processes
- Conserve energy while increasing the production throughput

Coating Applications Analysis

- Transfer efficiency in coating lines
 - Surface area, coating thickness, paint used
- Process in coating applications
 - Working of compliant spray guns and delivery of the coating.
 - Belt speed, rotating speed and air pressure related to output.
- Opportunity to improve
 - Chain on edge without spinning
 - Electrostatic spray guns
 - Overhead line

Findings

- Transfer efficiency for grills: 42.3%
- Transfer efficiency without rotation: 53%
- New fixture for better coverage
- Present line with infrared (IR) partial bake and existing oven
- Overhead line with IR cure

Recommendation

Overhead line with electrostatic spray and IR cure

- Load up to 6 parts on a fixture
- Fewer touches and smaller system footprint

Recommendations – Potential Annual Savings

Recommendation	Paint Reduction	VOC Reduction	Labor Reduction	Increase in Production	Savings	Investment	Payback Period	Status
Overhead Line with IR Oven	3,300 gallons	6.80 tons	75%	200%	\$370,600	\$475,000	1.3 years	Recommended
IR Bake and Existing Oven	2,500 gallons	5.11 tons	37.5%	_	\$189,000	\$420,000	2.3 years	Needs further analysis
Without Rotation	1,700 gallons	3.54 tons	-	-	\$56,900	-	Immediate	Needs further analysis

Washer Analysis

- Working process
 - Wash (1), rinse (2&3) and dryer, air knife
 - Belt speed, water consumption
- Optimize the washing process
 - Foam in the rinse tank
 - High water use
- Opportunity to improve
 - Eliminate foam
 - Efficient use of air knife
 - Upgrade spray nozzles

Findings

- Foam formation in stage 2 due to soft water
- Initial washer settings
- 6 GPM with present nozzles

Washer 1 & 2	Air Knife	Rinse Pressure (psi)		Water used (GPM)		
		Тор	Bottom	D.I	Soft	City
Initial	12 inches	15	15	11	16	-

Recommendations

- Pressure of the nozzles in stage 2 & 3
- Air knife height adjustment 4 inches
- Conductivity of the deionized (DI) tank
- City water usage in stage 2
- Low volume high pressure nozzles 0.3 GPM
- Standard work procedure

Recommendations – Potential Annual Savings

M :	/asher 1 & 2	Air Knife	Rinse Pressure (psi)		Water used (GPM)			
			Тор	Bottom	DI	Soft	City	
Ρ	resent	4	10	8	4	-	3	

Optimize Washer	Reduction	Savings	Status
Water & Sewer (Based on 2015)	9,093,000 gallons	\$57,400	Implemented
Softener Salt	28.5 tons	\$7,800	Implemented
DI Recharge	9 tanks	\$21,200	Implemented
Tot	tal	\$86,400	

Summary – Potential Annual Savings

Recommendation	Reduction	Savings	Status
Implement Overhead Line with IR Oven	3,300 gallons of paint 6.80 tons of VOC 75% Labor	\$370,600	Recommended
Optimize Washer Operation	9,093,000 gallons of water 28.5 tons of salt 9 DI tanks	\$86,400	Implemented
Standard Work	Defects in working process	-	In Process
Τα	otal Savings	\$457,000	-

Next Steps

- Planning and implementation of the new coating line
- Standard work procedure for coating processes
- Automation of the washer process
- Evaluating the throughput based on the standard work for the washer

M<u>n</u> TAP

University of Minnesota

Personal Benefits

- Industrial experience
- Professional exposure
- Manufacturing principles
- New contacts in the industry
- Ability to approach a problem

CELEBRATING

This project was sponsored in part by CCAI

