Energy Efficiency and Green Alternatives at IBM in Rochester

Daniel Sales MnTAP Advisor: Jon Vanyo

On-site Supervisor: Brian Morgan

UNIVERSITY OF MINNESOTA Driven to Discover™

Company Overview

- Formed 19th century→ consolidation of 4 businesses
- 3.1 million square foot
- Previously manufacturing and chemical distribution
- Software and hardware, data center, business, leased space

Source: IBM Rochester Wikipedia

Motivation for Change

- Leader in innovation→move towards reduced energy consumption and environmental responsibility
- Renewable energy procurement and active power demand reductions
- Site-wide optimization software
- Equipment reliability and waste reduction

Reasons for MnTAP Assistance

- Provide technical assistance on-site on projects of interest
- Audit HVAC and utility loop to identify opportunities for reduction
 - Energy consumption through improved efficiency
 - Reduced peak demands
 - Green corrosion inhibitors
- Present findings cohesively with savings and payback

Chilled Water System

A typical chilled water central system

Source: www.slideshare.nettaratitzairconditioning-repaired

Thermal Tank System

- Big battery storing thermal energy
- Discharge during the day to stop power consumption, charge at night to replenish energy
- Tempers loads improving equipment reliability

Source: http://www.cyp-res.com/stratified-chilled-water-storage-schws/

M<u>n</u> TAP

Approach 1 – Thermal Storage Tank

- Calculate reduction potential
- Run experiment to verify dashboard accuracy and calculation accuracy
 - Within 15% of kW calculations
- Work with operators to identify concern areas
- Work with software contractor to automate solutions

July Tank Test Data

Recommendation 1 – Thermal Storage Tank

- Use 2015 consumption as max level
- Bring in tank incrementally (5% step levels) to achieve 700 kW power drop and run reliably
- Increase flow conditionally
- Charge evenly through the night

Cost Summary

Process Description	Reduction (per year)	Implementation Cost (\$)	Savings (\$/yr)	Payback	Status
Thermal Storage Tank	700 kW	\$18,000	\$103,600	2 months	Implemented

Approach 2 – Air Handling Unit Audit

- Research components and process of an air handler
- Audit and catalogue opportunities for improvement
 - Use IR camera to determine fouling and plugging
- Run savings calculations
 - Energy, flow, and financial

Recommendation 2 – Air Handling Unit Audit

Project Descr.	Reduction (yr)	Cost (\$)	Savings (\$/yr)	Payback	Status
Pressure Independent Valve	1,100,000 kWh	\$170,000	\$93,000	21 months	Recommended
Gauge Replacement	NA	\$740	NA	NA	Implementing
Coil Cleaning	26,000 kWh	\$21,000	\$37,000	7 months	Implementing
Coil Maintenance	NA	\$7,500	\$15,000	6 months	Recommended
Coil Plugging	5,000 kWh	\$6,000	\$24,000	3 months	Implementing
TOTAL		\$205,240	\$169,000		

Approach 3 – Less Hazardous Corrosion Inhibitor

- Water requires shipment to hazardous waste facility from molybdenum levels in corrosion inhibitor
- Identify areas of waste associated with corrosion inhibitor
 - Sidestream chilled water filter
 - Perimeter heating System
- Reach out to NC branch to analyze previous project work
- Identify potential alternative and clean up processes

Recommendation 3 – Less Hazardous Corrosion Inhibitor

Benefits

- Eliminate roughly nine 4,500 gallon tankards of waste water annually
- Save \$41,000 in labor, equipment, and shipping costs

Removal Procedure

- Ion exchange resin trailers onsite 65-130 days
- Sidestream 35-400 gpm
- Get molybdenum below 3 ppm
- Perimeter heat replace in shock tanks as needed

Process Description	Reduction (per year)	Implementation Cost (\$)	Savings (\$/yr)	Payback	Status
Corrosion Inhibitor Replacement	40,500 gal waste water	\$440,000	\$41,000	11 years	Recommended

Recommendations Summary

Process Description	Reduction (per year)	Implementation Cost (\$)	Savings (\$/yr)	Payback	Status
Thermal Storage Tank	700 kW	\$18,000	\$104,000	2 months	Implemented
Pressure Independent Valve	1,100,246 kWh	\$170,000	\$93,000	21 months	Recommended
Coil Cleaning (exterior)	26,208 kWh	\$21,000	\$37,000	9 months	Implementing
Coil Maintenance	NA	\$7,500	\$15,000	6 months	Recommended
Coil Plugging	5,000 kWh	\$6,000	\$24,000	3 months	Implementing
Corrosion Inhibitor Replacement	40,500 gal waste water	\$440,000	\$41,000	11 years	Recommended
Total		\$663,000	\$314,000	26 months	

Personal Takeaways

- Problem solving with an open mind
- People run business, not numbers
- Somebody knows
- Confidence with results

This project was supported in part by the Minnesota Pollution Control Agency

