Water Conservation and Heat Rate Improvements Xcel Energy

Christine Lucky

UNIVERSITY OF MINNESOTA Driven to Discoversm MnTAP Supervisor: Mick Jost

Company Supervisor: Cheryl Erler

Company Background

- Major natural gas and electricity provider in 8 Midwestern and Western States
- Black Dog and Riverside sites for project
 - Combined cycle generating plants

Combined Cycle

Incentives for Change

Reduce water usage

- Reduce waste water discharge to environment
- Decrease operation loads on equipment
- Lower operating costs

Improve heat rate

- Reduce amount of natural gas burned
 - \$3,000-\$12,000 reduction per 1 Btu/kWh reduction
- Reduce catalyst and chemical use

Reasons for MnTAP Assistance

- Explore opportunities for water savings
- Identify systems with largest potential savings
- Find energy efficiency improvements
- Make recommendations to reduce water use
- Initiate implementation of reduction projects

Approach Taken

- Tracked water use and discharge data over last 4 years
- Performed water balance on systems
- Gathered information from engineers, I&C, operators
- Identified systems and variables for optimization
- Developed recommendations and planned implementation

Water Balance Improvements

Opportunity – Both Plants:

- Significant difference in water reporting data and process flow estimates
- Closed valves going to common discharge
 - Internally leaking valves to blowdown

- Water use not accounted for in control system instrumentation
 - Ex. Building heating system still using water

Water Balance Improvements

Recommendation	Annual Reduction	Implementation Cost	Annual Savings	Payback Period	Project Status
Isolate Unused Systems	4,032,000 gal	\$0	\$9,720	Immediate	Complete
Repair Leaking Valves	756,000 gal 93,000 therms	\$18,600	\$29,100	8 months	In Planning
Optimize Rotor Air Cooler Blowdown	Needs Further Analysis	\$0	To Be Determined	Immediate	In Progress
Total	4,810,000 gal 93,000 therms	\$18,600	\$38,900	6 months	

Prevent RO Drainage

Opportunity – Riverside:

- RO 1 permeate tank level dropped in standby
 - Water coming out of drain line
 - Should be no flow
- RO 2 had open drain with elevated vacuum break
 - Sent water to drain at normal tank levels

M<u>n</u> TAP

Prevent RO Drainage

- Saves 75 equipment hours
- Prevents equipment damage

Recommendation	Annual Reduction	Implementation Cost	Annual Savings	Payback Period	Project Status
Elevated Vacuum Break (RO 1)	528,000 gal	\$100	\$340	3 months	Complete
Close Redundant Drain Valve (RO 2)	202,500 gal	\$0	\$180	Immediate	Complete
Total	730,500 gal	\$100	\$520	2 months	Complete

Improve Mixed Bed Tank Operation

Opportunity – Riverside:

- Mixed bed throughput is lower than expected
 - Design throughput:
- 1,890,000 gallons approx. 22 days of service

UNIVERSITY OF MINNESOTA

Average 2016 usage:

approx. 1,087,000 gallons (60% of design) 15.5 days of service

- Likely the result of low pH to mixed beds
 - Results in higher CO₂ levels

Improve Mixed Bed Tank Operation

Recommendation	Annual Reduction	Implementation Cost	Annual Savings	Payback Period	Project Status
Tune pH Control Loop	4 regenerations	\$730	\$10,860	1 month	In Progress
Bypass Unneeded Piping		\$110			Complete
Begin Caustic Injection Immediately	2 regenerations	\$245	\$5,140	3 weeks	In Planning
Total	6 regenerations	\$1,085	\$16,000	1 month	

Optimize Water Softeners

Opportunity – Black Dog:

- Water softeners regenerated before any decrease in water quality
- Damaged valve leaking softened water
- Regenerations completed before set point reached

Optimize Water Softeners

Recommendation	Annual Reduction	Implementation Cost	Annual Savings	Payback Period	Project Status
Repair Leaking Drain Valve	425,100 gal 4,935 lbs salt	\$800	\$1,090	9 months	In Progress
Improve Procedure Adherence	58,300 gal 9,870 lbs salt	\$0	\$1,100	Immediate	In Progress
Increase Throughput Between Regenerations	33,300 gal 5,640 lbs salt	\$0	\$650	Immediate	Complete
Add Hardness Monitor	62,400 gal 10,575 lbs salt	\$2,300	\$1,150	2 years	In Progress
Total	545,800 gal 25,400 lbs salt	\$3,100	\$3,340	11 months	

Heat Rate Calculations

Opportunity – Black Dog:

- Many important heat rate parameters only calculated yearly
- Have needed instrumentation
 - Can put logic into control system
- Give information for performance and areas of improvement
 - 1 Btu/kWh improvement saves \$3,000 to \$12,000 annually

Parameter	Effect on Net Heat Rate	Added Fuel Cost per Year	
Main Steam Spray Flow	+2 Btu/kWh / 1% Throttle Flow	\$10,100	
Condenser Backpressure	12 Btu/kWh / 0.1 in Hg	\$60,600	
Final Feedwater TTD	21 Btu/kWh / 10°F	\$106,200	
HP Turbine Efficiency	20 Btu/kWh / % efficiency	\$83,700	
Cycle Water Loss	2 Btu/kWh / 1000 lb/hr	\$10,100	

Heat Rate Calculations

- Monitor efficiency online
 - 27 new points
 - Quarterly review recommended

Informs decisions

- Future projects
- Maintenance
- Cleanings

🧀 🔄 🕘 🕘 👫 💦		🙀 🏭 🍒 🛛 Background 🔲 Mark			
UNIT BOILER MENU OVERVIEW	OVERVIEW OVERVIEW	EHC ST HP STOP	HP BYPASS STM TRB FUEL GAS	CLOSED STM TRB COMPONENT CONTROL	DIGITAL CT DE-SEL CONTROL
COMBINED CYCLE NET HEAT RATE	7,193.57 BTU/KW	UNIT 5-2 HEAT	RATE CALCULATIONS	CONDENSER TEMP RISE	22.53 DEG F
COMBINED CYCLE NET EFFICIENCY	47.45 PCT	LP ECONOMIZER PINCH TEMP	19.98 DEG F	CONDENSER TUBE VELOCITY	8.44 FT/S
CT GROSS HEAT RATE	10,171.63 BTU/KW	HP ECONOMIZER PINCH TEMP	9.79 DEG F	HOTWELL SUBCOOLING	2.33 DEG F
COMPRESSOR EFFICIENCY	88.88 PCT	ST 1ST STAGE PRESSURE RATIO	1.03	CIRCULATING WATER FLOW	82,487.18 GPM
COMPRESSOR PRESSURE RATIO	16.16	CONDENSER ACTUAL HEAT TRANSFER	383.53 BTU/HR	21 FWH TERM TEMP DIFF	76.47 DEG F
CT EXHAUST BACKPRESSURE	16.54 INWC	CONDENS ER DUTY	941,604,736 :TU/HR	21 FWH DRAIN APPROACH TEMP	91.41 DEG F
HRSG EFFECTIVENESS	88.42 PCT	CONDENSER CLEANLINESS	6.68 PCT	21 FWH TEMP RISE	17.23 DEG F
HRSG GAS SIDE PRESSURE DROP	16.32 INWC	CONDENSER PERFORMANCE FACT	7.86 PCT	21 FWH DRAIN SUBCOOLING	2.28 DEG F
LP ECONOMIZER APPROACH TEMP	3.48 DEG F	CONDENSER INTIAL TEMP DIFF	47.59 DEG F	COMBINED CYCLE AUX POWER USE	1.93 PCT
HP ECONOMIZER APPROACH TEMP	50.10 DEG F	CONDENSER TERM TEMP DIFF	25.06 DEG F	TOTAL MAKEUP TO CONDENSER	0.00 <mark>8</mark> KLB/HR
2592 5-2	2 HEAT RATE C/	ALCULATIONS			
169.47 MW	COTAL MW TH	RUI PRESS LP DRUM RA 182 A PSTG 1-2 206 tri 1	10,24 TN 11,000,0 ar 1442	50 ar 1916 87 Proc	919.06 KDBU 2.182.3 OTUVU

Recommendation Summary

Recommendation	Annual Reduction	Implementation Cost	Annual Savings	Payback Period	Project Status
Reduce Auxiliary Water Use	4,810,000 gal 93,000 therms	\$18,600	\$38,900	6 months	In Progress
Prevent Permeate Tank Drainage	730,500 gal	\$100	\$520	2 months	Complete
Increase Mixed Bed Throughput	6 regenerations	\$1,085	\$16,000	1 month	In Progress
Optimize Water Softeners	545,800 gal 25,400 lbs salt	\$3,100	\$3,340	11 months	In Progress
Heat Rate Calculations	Further Analysis Needed	\$0	Variable	Immediate	Implemented
Totals	6,086,000 gal 93,000 therms 25,400 lbs salt	\$22,900	\$58,700	4.5 months	

Personal Benefits

- Hands on engineering work
- Experience in power generation
- Problem solving

Project planning and management

Questions?

This project was sponsored in part by Metropolitan Council Environmental Services

