Optimizing Energy Efficiency at Saint Peter Wastewater Treatment Plant

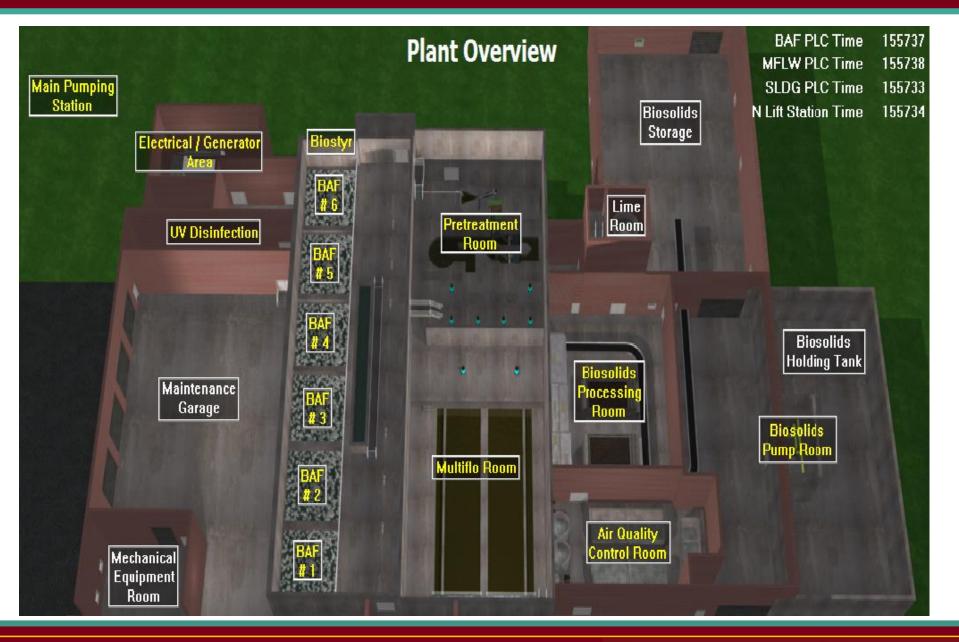
Merry Tesfu MnTAP Advisor: A.J. Van den Berghe On-Site Supervisor: Jeff Knutson

University of Minnesota Driven to Discover™

Facility Overview

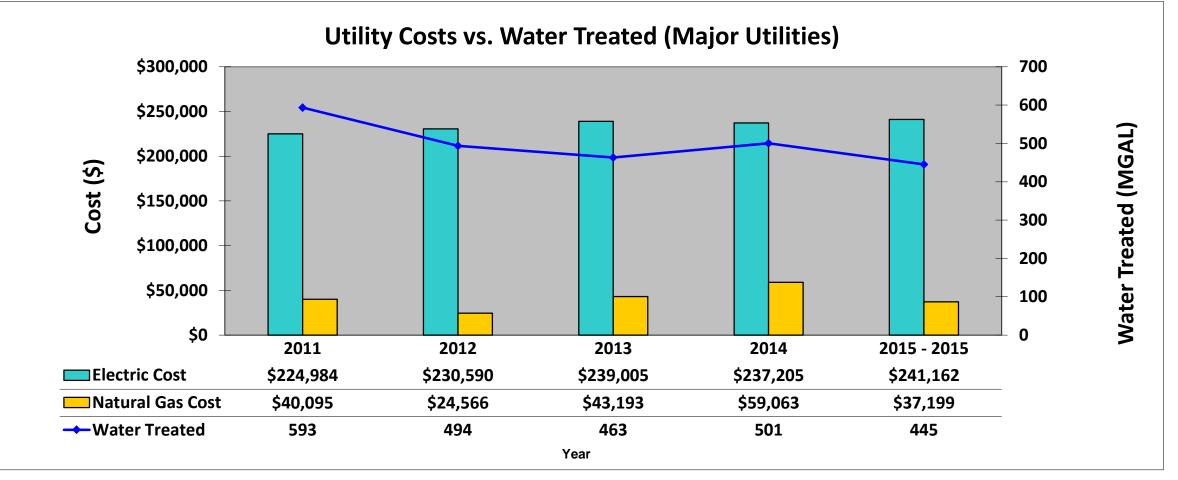
- Provides treatment

 of wastewater for the city of
 St. Peter to discharge into
 Minnesota River
- Originally built in 1961
- Expanded in September 2000
- Designed flow rate: 4 million gallon per day (MGD)
- Energy consumption:
 ~ 3 million kWh per year



Treatment Objective

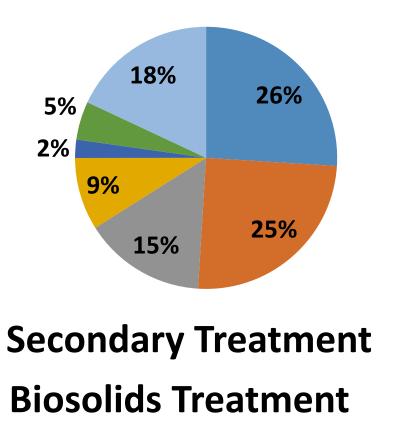
- Solids removal
- Biochemical Oxygen Demand (BOD) removal
- Total Suspended Solids (TSS)
 removal
- Ammonia Nitrogen removal
- Phosphorous removal
- Pathogen removal



Motivations for Change

Reasons for MnTAP Assistance

- Identify energy usage of secondary treatment
- Optimize aeration system by reduced Dissolved Oxygen (DO)
- Determine whether the blower can handle the reduction
- Optimize the biosolids blower
- Make recommendations for reducing energy



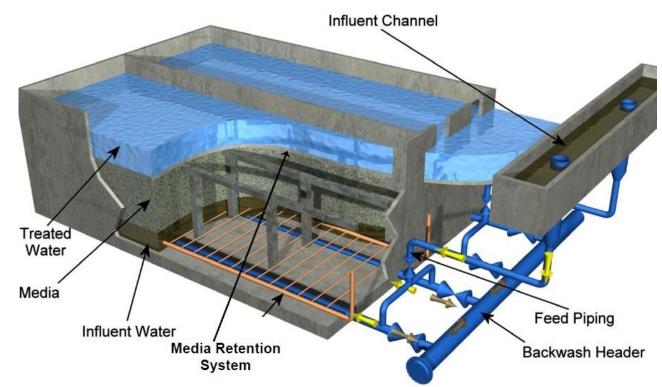
Approach

- Understand the facility's current energy usage and operating methods
- Use aeration model to quantify energy savings through reduced DO
- Identify how Supervisory Control And Data Acquisition (SCADA) adjustments will impact the aeration energy consumption
- Test for energy reduction recommendations that will insure wastewater treatment requirements

Top Electrical Energy Use Systems

- **#1 SECONDARY TREATMENT**
- #2 ODOR CONTROL
- **#3** SLUDGE HANDLING
- #4 INTERNAL PLANT PUMPING
- **#5 PRIMARY TREATMENT**
- Balance of Plant Identified

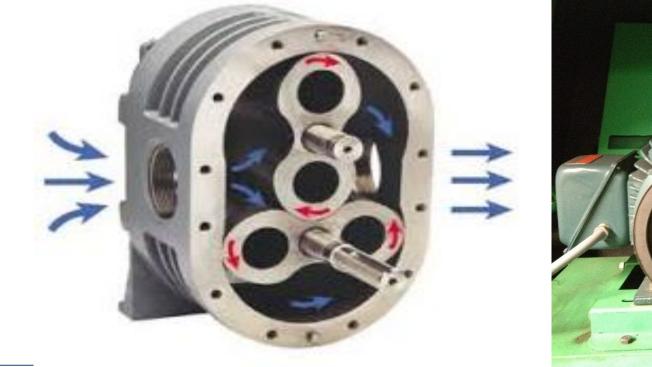
26%


15%

Balance of Plant Unidentified

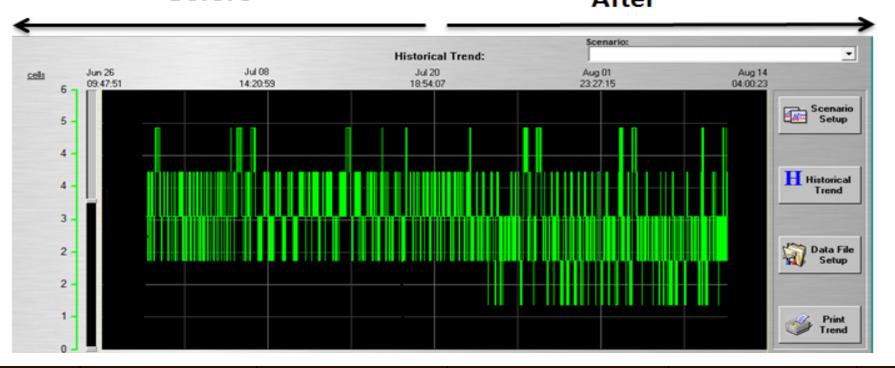
M<u>n</u> TAP

Biological Aerated Filter (BAF)


- Ammonia, Phosphorous, BOD, and TSS removal using bacteria
- Bacteria require Dissolved Oxygen (DO)
- Low DO can cause unwanted organisms to develop
- High DO unnecessary for adequate treatment and does not further improve the quality of the effluent water

Blowers

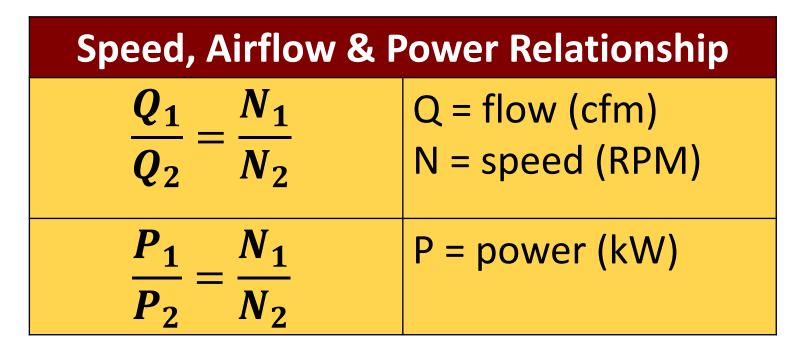
- 7 Positive displacement (PD) belt drive blowers: 50 HP each
- Provide air for the BAF cells



SCADA Adjustment

- BAF system controlled by SCADA
- The number of cells in filtration determined by influent flow and target cell velocity
- Reducing the target cell velocity from 2 gpm/ft² to 1 gpm/ft² to improve TSS removal at reduced cells
- Allowing the number of cells in filtration to be determined by the influent flow
- Result: Reduction in the average cells in filtration

SCADA Adjustment Before After



Recommendation	Energy Reduced (per year)	Net Savings (per year)	Implementation Cost	Payback Period (year)	Status
Alternative 1A SCADA Adjustment	153 <i>,</i> 600 kWh	\$12,300	\$0	Immediate	Implemented

DO Control System

- Reducing the speed of the blower decreases the airflow
- Reducing the speed decreases the power consumption

DO Control System

Installing Variable Frequency Drive (VFD)

- Reduce the blower speed from 1,682 RPM to 1,122 RPM
- Reduced average effluent DO from 11 mg/L to 7 mg/L
- Decrease the blower energy consumption by 25%

Recommendation	Energy Reduced (per year)	Net Savings (per year)	Implementation Cost	Payback Period (year)	Status
Alternative 1B: Installing VFD	173 <i>,</i> 600 kWh	\$13,900	\$27,200	2	Recommended

Combination of SCADA Adjustment and DO Control System

- SCADA adjustment and installing VFDs
- Decrease the blower energy consumption by 41%

Recommendation	Energy Reduced (per year)	Net Savings (per year)	Implementation Cost	Payback Period (year)	Status
Alternative 1C combination of 1A & 1B	289,600 kWh	\$23,200	\$27,200	1.2	Recommended

Biosolids Blower

- Biosolids Blower: 100 HP consumes 407,200 kwh/year
- Reducing the blower speed along with the liquid level by using VFD
- Decrease the blower power consumption by 61%

Recommendation	Energy Reduced (per year)	Net Savings (per year)	Implementation Cost	Payback Period (year)	Status
Opportunity 2: Installing VFD & controlling on tank level	246,500 kWh	\$19,700	\$18,000	0.9	Recommended

Successful Process Changes

Recommendations	Energy Reduced (per year)	Implementation Cost	Net Savings (per year)	Payback Period (year)	Status	
	Opportu	nity 1: Biological Ae	rated Filter Blower I	Efficiency		
1A: SCADA Adjustment	153,600 kWh	N/A	\$12,300	Immediate	Implemented	
1B: Installing VFD	173,600 kWh	\$27,200	\$13,900	2	Recommended	
1C: (1A &1B) SCADA Adjustment And Installing VFD	289,600 kWh	\$27,200	\$23,200	1.2	Recommended	
Opportunity 2: Biosolids Storage Aeration Blower Efficiency						
Opportunity 2: Installing VFD	246,500 kWh	\$18,000	\$19,700	0.9	Recommended	

Potential Future Projects

- To Model the aeration system with 5mg/L effluent DO Saving: 300,000 kWh/year, \$25,000/year
- To test the aeration system with 1.5 gpm/ft² target cell velocity and 7mg/L reduced effluent DO

Saving: 400,000 kWh/year, \$32,000/year

 To optimize odor control system: consumes 25% of the total energy

Personal Benefits

- Real-world engineering
 experience
- Understanding in process control of wastewater treatment
- Equipment energy usage and optimization
- Communication skills
- Small town life experience

Questions?

This project was sponsored in part by the Southern Minnesota Municipal Power Agency

