Minnesota Technical Assistance Program

Compressed Air Efficiency Opportunities at Caterpillar Paving Products

MnTAP Intern: William Bowman

UNIVERSITY OF MINNESOTA Driven to Discoversm Project Advisor: AJ Van den Berghe, C.E.M.

Company Overview: Cat® Paving Products

Operations headquartered in Brooklyn Park, MN

-372,000 sq. ft. (8.5+ acre) facility -Over 736 employees

 Designs and manufactures road construction machinery

-Asphalt pavers, screeds, compactors and road reclaimers

 Compressed air used extensively throughout fabrication and assembly processes

-11% of total electricity consumption

Incentives to Change

- Corporate Sustainability Goals
 - -Intensity based

-Maintain or reduce energy consumption as production rates increase

- Process Efficiency Program
 - -Rebate opportunities
 - -Access to technical assistance
 - -Data logging

 Data prior to 2014 has been restated due to a) acquisitions, b) divestitures and c) data updates realized from improved accuracy.

Project Approach

Supply

- Determine baseline energy consumption
- Profile air flow demands
- Model energy saving potential for system upgrades

Locate and tag existing leaks

Demand

- Determine minimum pressure requirements and down-regulate pressures
- Measure and catalog air flow to major end uses and determine costs
- Consider higher efficiency alternatives to air-driven systems

Opportunities Overview

Step 1: Demand-Side Reductions

Repair existing compressed air leaks

Regulate pressures; reduce artificial demand

Use alternatives to compressed air when possible

Step 2: Supply-Side Improvements

Generate air more efficiently using a Variable Speed Drive (VSD) Compressor

> Upgrade central control system to optimize compressor outputs

Leak Reduction Opportunity

 Initial leak flow rate (approx.): 91 CFM Annual energy waste: 155,700 kWh/yr Annual cost: \$14,560

Cost and Savings Summary for Leak Repair								
Number of Leaks Tagged	Labor Cost	Energy Saved (kWh/yr)	Cost Savings (\$/yr)	Indirect Emissions Prevented (MT CO ₂ -eq)	Simple Payback			
110	\$5,500	116,752	\$10,921	55.2	6 months			

Artificial Demand Reductions

 Adjusted regulators throughout fabrication processes

-Estimated 14 CFM reduction to average production demand

 Identified flow reduction potential for air pallets on Pavers Line

-61 CFM reduction to peak flow demand

• Identified flow reduction potential for RM air pallet

-55 CFM reduction to peak flow demand

Eliminating Pneumatic Inefficiencies

 Replace pneumatic drum pumps and mixers with electric

> Annual Energy Savings: 76,667 kWh Annual Cost Savings: \$7,171 Simple Payback: 1.3 years

• Engineer alternatives for RM and Paver air pallets

-Eliminate need for 3rd compressor Annual Energy Savings: 21,257 kW Peak Billable Demand Reduction: 38 kW Annual Cost Savings: \$6,052

Improving Supply-Side Efficiency

 Replace one of three compressors with VSD model and upgrade control system

VSD

Fixed

Speed

VSD

VSD

Fixed

Speed

Fixed

Speed

1450 200 1250 150 1050 System Input Power (kW) Air Flow (CFM) 850 100 650 450 50 250 0 50 12 AM 4 AM 8 AM 12PM 4 PM 8PM Time of Day Baseline System Input Power Improved System Input Power — Air Flow Output

SYSTEM INPUT POWER VS. AIR DEMAND

Energy, Costs & Savings Breakdown

Total Cost of Upgrade:	le: \$51,639 te: <u>-\$18,000</u> \$33,639	Energy and Cost Comparison			
Xcel Rebate:			Primary System (Baseline)	With VSD & Control Upgrades	Savings
Simple Раураск:	Average Total Power (kW):	74.0	51.9	22.1 kW	
92 MT CO ₂ - eq		Peak Total Power, Billable (kW):	168	123	45 kW
Emissions Prevented	ons ted	Annual Energy (kWh/yr):	648,300	454,900	193,400 kWh
		Annual Cost (\$/yr):	\$60,640	\$42,550	\$18,090
Mn			T.7		

Recommendation Summary

Recommendation	Energy Saved per Year	Annual Cost Savings	Emissions Prevented (MT CO ₂ - eq)	Payback period	Status
Repair all tagged leaks	116,752 kWh	\$10,920	55	0.5 years	Implementation In Progress
Control upgrades and integration of VSD into Primary Compressor System	193,400 kWh	\$18,090	92	1.9 years	Implementation In Progress
Regulator adjustments (fabrication)	15,126 kWh	\$1,415	7.2	Immediate	Implemented
Pneumatic Pump/Mixers to electric	76,667 kWh	\$7,171	36	1.3 years	Recommended
Engineer alternatives to large air pallets	21,257 kWh	\$6,052 (peak based)	10	Unknown	Analysis Incomplete

Additional Opportunities

- Pollution prevention and waste reduction in painting operations
 - Find alternative solvent for flushing paint lines
 - Improve transfer efficiency
 - Recycle water with closedloop pressure washing booths

TOTAL ELECTRICITY USE

Personal Benefits

- Better understanding of industrial compressed air systems
- Real-world experience implementing projects within a large corporation
- Improved analytical skills
- Networking

Questions?

