Waste Process Optimization ECO Finishing

Jerico Sanchez Hulstrand MnTAP Advisor: Michelle Gage Company Supervisor: Paul Madden

University of Minnesota

Driven to DiscoversM

University of Minnesota

Company Overview

- ECO Finishing provides over 20 different types of metal finishes for protection or decoration
- Process parts for aerospace, military, commercial, and automotive industries
- Thirteen process lines with either rack or barrel plating

UNIVERSITY OF MINNESOTA²

Incentives for Change

- Current Situation
 - 28,000,000 gal/year of water costs \$200,000 in purchase and sewer charges
 - Disposal of 840,000 lbs./year sludge costs \$120,000
- Increasing water and waste disposal costs
- As company expands, increased water use and sludge generation

UNIVERSITY OF MINNESOTA³

Reasons for Seeking MnTAP Assistance

Waste Stream Optimization

- Map continuous and batch wastewater treatment systems
- Determine feasibility of treating solid waste
- Research alternate waste treatment chemistries and processes

Water Reduction Opportunities

- Analyze water consumption
- Investigate water reuse technologies
- Reduce water use at the source
- Make Recommendations
 - Cost analysis and technical feasibility

Project Approach

- Map out and understand production and waste processes
- Collect data on waste and water streams
- Research relevant technologies with greatest benefits
- Contact vendors for quotes and information
- Propose and oversee recommendations

UNIVERSITY OF MINNESOTA⁵

Closed Loop System

Water Reuse Potential

- Over 60,000 GPD sent to sewer after treatment
- System with 70% recovery saves 15 million gal/year
- Ultrafiltration
 - Low pressure membrane, based on size exclusion
 - Serves as reverse osmosis pretreatment
 - Removes suspended solids (TSS), oils, colloids
- Reverse Osmosis
 - Desalination, removes minerals
 - Removes dissolved solids (TDS)

Closed Loop System (continued)

- Cost Analysis
 - Initial estimate provided by Haliant Technologies
 - Operating cost of \$47,000 per year includes electrical requirements, labor, and membrane maintenance
 - Reduce future Sewer Availability Charge (SAC)

Water Savings	Water Savings	Capital Cost	Operating and	Net Savings	Payback Period
(gal/year)	(\$/year)		Maintenance (\$/year)	(\$/year)	(months)
15,000,000	\$110,000	\$130,000	\$47,000	\$63,000	25

Barrel Waste Reduction

Metal Drums

- Barrel waste can include acid waste, sludge, acid or alkaline solutions, carbonate solids
- Good candidates for evaporation have high water content and little debris, such as electro/soak cleaner

• 55 Gallon Drum Evaporator

- Evaporates 2 gal/hour of water
- Electrically heated system uses drum as disposal vessel
- Does not require operator while running
- Mist eliminator system

University of Minnesota⁸

Barrel Waste Reduction (continued)

Cost Analysis

- Proposed use for electro/soak cleaner, sludge, waste liquid, which accounts for 32% of barrel waste
- Estimate of 50% evaporation rate
- Barrel content determines price, average of \$260 each
- Condenser module for water recover costs an additional \$10,000, so not economically feasible

Waste Reduction	Waste Reduction	Capital Cost	Operating and	Net Savings	Payback Period
(Ibs./year)	(\$/year)		Maintenance (\$/year)	(\$/year)	(months)
19,000	\$10,800	\$9,600	\$2,700	\$8,100	14

Reusing RO Rinse Water

Water Reclamation

- Hot water rinses are clean enough to reuse before treatment
- One possibility for reuse is pipe to another rinse, to recover 2,000,000 gal/year
- Replace city water for a cleaner rinse
- Decrease volume of water sent to waste treatment
- Stream Compatibility
 - Checked for pH, conductivity, waste treatment needs
 - At least one tank in each line eligible for water reuse

University of Minnesota¹⁰

Reusing RO Rinse Water (continued)

• Rinse Reuse Example

- Hand Line Warm Rinse to Counterflow Rinse
- Cleanest RO rinse, pH near that of city water (6.62)

Cost Analysis

 Requires additional piping, no operating costs

Water Savings (gal/year)	Water Savings (\$/year)	Capital Cost	Payback Period (months)
2,000,000	\$14,500	\$2,400	2

Floating Insulation for Open Tanks

- Evaporation
 - 1,500,000 gallons evaporated from heated open tanks
 - Evaporated water costs \$7,700 yearly
- Heat Loss
 - Nearly 100,000 therms per year lost to environment
 - Hard to control temperature for agitated tanks
- Solution
 - Covering tanks reduces heat loss by 80% and evaporation by 70%
 - Floating tank insulation (Hexies) still allows parts access to tanks

UNIVERSITY OF MINNESOTA¹²

Test on Anodize Hot Water Seal

Implementation

- Difficulty keeping temperature high enough
- Estimated heat loss of 7,700 therms
- 64,000 gallons of water evaporated yearly
- Costs \$600 to cover 38.5 ft² tank
- Can't use for thin and small parts

Water Savings	Water Savings	Heat Savings	Heat Savings	Capital	Net Savings	Payback Period
(gal/year)	(\$/year)	(therms/year)	(\$/year)	Cost	(\$/year)	(months)
1,065,000	\$7,700	81,000	\$59,000	\$11,300	\$55,300	3

UNIVERSITY OF MINNESOTA¹³

Test Results

Anodize Hot Rinse Tank Temperature

UNIVERSITY OF MINNESOTA¹⁴

Further Implementation

- Hardcoat Warm Rinse
 - Costs \$400 to cover 18 ft² tank
 - Heat loss of 1,000 therms
 - 14,000 gallons evaporated
 - Payback period: 6 months
- Other Heated Tanks
 - Tanks with problems getting to high enough temperatures
 - Hot rinses have easiest implementation

Hardcoat Warm Rinse Temperature

Waste Treatment Optimization

Ferrous sulfate for chrome reduction

- To reduce hexavalent chrome reaction occurs at pH 2-3, but to precipitate chrome need pH 7-9
- Determined if change in pH and reduced chemical additions could favor replacing sodium metabisulfite
- Less chemicals used to adjust pH, less sludge
- Lab scale test: used 3 times stoichiometric amount, reduced chrome from 240 ppm to 8.6 ppm at a pH of 5

UNIVERSITY OF MINNESOTA

• Would still need to lower pH to be effective

Waste Treatment Optimization (continued)

Ozone for cyanide destruction

- No chemicals need to be stored, only operating cost is electricity
- Pure oxygen and ozone produced and destroyed on site
- Less labor dedicated to handling chemicals
- Remote operation and control
- Cost Analysis
 - \$90/day electricity cost vs. \$135/day chemical costs
 - Reduced sludge by 5,000 lbs. and better control
 - \$250,000 capital cost, but net savings only \$16,000 per year from reduced sludge, maintenance, and chemical use

Waste Treatment Optimization (continued)

Electroplating Waste Reduction

- Changing chemistries/treatment methods expensive or ineffective
- Most cost efficient method still reducing dragout to rinses
- Dragout reduction by reducing part drip time still recommended

EPA: Meeting Hazardous Waste Requirements for Metal Finishers

UNIVERSITY OF MINNESOTA¹⁸

Project Summary

Recommendation	Reduction (per year)	Implementation Cost	Net Savings (\$/year)	Payback Period	Status
Closed Loop Water System	15,000,000 gallons water	\$130,000	\$63,000	25 months	Recommended
Reuse RO Rinse Water	2,000,000 gallons water	\$2,400	\$14,000	2 months	Recommended
Floating Insulation for Open Tanks	1,000,000 gallons water 80,000 therms	\$12,000	\$55,300	3 months	Implementing
Drum Evaporator	19,000 lbs. hazardous waste	\$9,600	\$8,100	14 months	Recommended

UNIVERSITY OF MINNESOTA¹⁹

MnTAP Internship Benefits

- Industry experience
- Apply classroom knowledge to real-world problems
- Learn about new processes
- In charge of own project
- Propose, implement, and test real solutions

UNIVERSITY OF MINNESOTA²⁰

Thank You!

Questions?

