Water and Energy Efficiency GE Power and Water Technologies Nikola Trukov Advisor: Jon Vanyo; Karl DeWahl

Minnesota Technical Assistance Program

UNIVERSITY OF MINNESOTA Driven to Discovers

Company Overview

Minnesota Technical Assistance Program www.mntap.umn.edu

Company Overview

- Provide water treatment products for businesses and homes
 - Depth Filters
 - Membranes
 - RO Systems

RO System

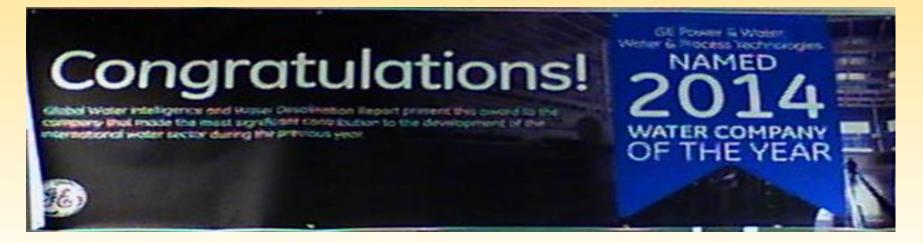
Membrane

Depth Filters

Minnesota Technical Assistance Program www.mntap.umn.edu

Process Overview

- Non-contact cooling water
- Polypropylene
- Energy



Minnesota Technical Assistance Program www.mntap.umn.edu

Motivations for Change

- Optimize the use of water resources
- Reduce wastewater
- High energy costs

Minnesota Technical Assistance Program www.mntap.umn.edu

Reasons for MnTAP Assistance

- Analyze and understand water flow
- Quantify and reduce water use
- Understand the distribution of energy usage

Approach

Understand cooling water effects throughout

the process

 Develop relationship between water flow and temperature

Minnesota Technical Assistance Program www.mntap.umn.edu

Project Considerations

- Criteria:
 - Prevent overheating the hopper
 - Account for temperature fluctuations
 - Ensure the flow of cooling water during operation
 - Avoid hot surfaces
- Water and temperature data collection
- Interactions with the team

Flow Rates on Line 1 and 5

- Non-contact cooling water
- Temperature change

Minnesota Technical Assistance Program www.mntap.umn.edu

Flow Rates on Lines 1 and 5

- Opportunity
 - High water flow
- Solution
 - Adjust flow rate (metering valve, flow meter)

	Line	Current Flow Rate (gal/min)	Recommended Flow Rate (gal/min)	Reduction in Water Consumption (gallons)	Financial Savings Per Year
	1	3.2807	0.5	1,400,000	\$3,000
Γ	5	1.8376	1.5	150,000	\$300
	Total	5.1183	2.0	1,550,000	\$3,300

Minnesota Technical Assistance Program www.mntap.umn.edu

Surface Temperatures

- Exposed hot services
- Safety hazard

Minnesota Technical Assistance Program www.mntap.umn.edu

Surface Temperatures

- Opportunity
 - Surface temperatures on Lines 2 and 4 are above 120°F
- Solution

- Adjust flow rate (metering valve, flow meter)

Line	Current Flow Rate (gal/min)	Recommended Flow Rate (gal/min)	Increase in Water Consumption (gallons)	Financial Savings Per Year
2	0.3525	0.5	50,000	-\$100
4	0.3709	0.5	50,000	-\$100
Total	0.7234	1.0	100,000	-\$200

Minnesota Technical Assistance Program www.mntap.umn.edu

Water Flow During Shutdown

- Continuous water flow
- Extruder shutdown

Minnesota Technical Assistance Program www.mntap.umn.edu

Water Flow During Shutdown

Opportunity

 Unable to automatically shut off water supply when a line is turned off

Solution

 Normally-open solenoid valve with interlock system

Minnesota Technical Assistance Program www.mntap.umn.edu

Line 6 Flow Rates

- In the process of measuring flow rates
- Low temperatures
- Opportunity for significant water flow

reduction	Line	Estimated Flow Rate (gal/min)	Recommended Flow Rate (gal/min)	Estimated Water Savings Per Year (gal)	Estimated Financial Savings Per Year
	6-1	1.10	0.5	315,360	\$668
	6-2	1.70	1.0	367,920	\$779
	6-3	1.10	0.3	420,480	\$890
	6-4	1.09	0.3	415,224	\$878
	6-5	1.10	0.3	420,480	\$890
	Total			1,900,000	\$4,100

Minnesota Technical Assistance Program www.mntap.umn.edu

Energy

- Components:
 - 5 large extruders with heaters
 - 5 small extruders with heaters
 - 4 air compressors

Minnesota Technical Assistance Program www.mntap.umn.edu

UNIVERSITY OF MINNESOTA Driven to Discover™

Energy Demand Charge

• Opportunity

 Energy spikes cause a substantial energy demand charge

- Possible Ideas
 - Adjust start-up schedule
 - Increase efficiency of electrical equipment

Successful Process Changes

Recommendation	Water reduction per year (gallons)	Net savings (per year)	Payback Period	Status
Install metering valve on Line 1-5	1,450,000	\$3,100	~9 months	Proposed
Reduce flow rates on Line 6 extruders	1,900,000	\$4,100	~3 months	Testing
Install solenoid valve and an interlock on all water supply pipes	>950,000	\$2,000	~1.6 years	Proposed
Install thermocouple with display on all lines	-	-	-	Proposed
Adjust start-up schedule and improve efficiency of electrical equipment	-	-	-	Collecting Data
Totals	4,300,000	\$9,200	1.4 years	-

Minnesota Technical Assistance Program www.mntap.umn.edu

Personal Benefits

- Experience working in an industrial environment
- Professional/technical development
- Better understanding of project planning and management
- Data collection and analysis
- Deeper understanding of safety/health policies
- Working alone and on a team

Thank you to everyone at MnTAP and GE for making this project possible

Questions?

Minnesota Technical Assistance Program www.mntap.umn.edu

