Steam System Solutions at Seneca Foods Corporation

Emily Hutson Paul Pagel

Minnesota Technical Assistance Program

Seneca Foods Corp. Rochester, MN

 A vegetable canning and freezing plant

 The only producer of cream-style corn in the U.S.

Minnesota Technical Assistance Program www.mntap.umn.edu

A New Era of Energy Management at Seneca

- Changing consumer priorities and customer demands
- Cooperating resources
 - Utility companies (RPU, MERC)
 - Engineering consultants
 - Sales reps
- Growing interest in steam system improvements

UNIVERSITY OF MINNESOTA Driven to Discover™

Reasons for MnTAP Assistance

- Intern needed to:
 - Assist management in understanding steam system
 - Evaluate energy conservation opportunities
 - Coordinate efforts between resource companies
- Seneca had specific interest in:
 - Accumulator project

Minnesota Technical Assistance Program www.mntap.umn.edu

Approach

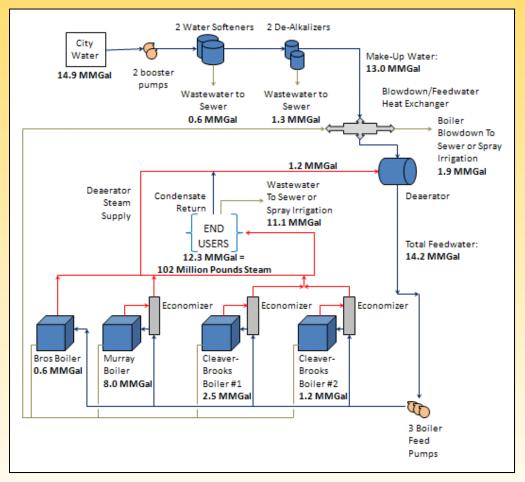
- Understand steam generation and use
- Listen to operators' and managers' frustrations with system
- Determine root causes
- Identify solutions
- Conduct economic analysis

UNIVERSITY OF MINNESOTA Driven to Discover™

Locating Areas for Improvement

Generation

Distribution


End-Use

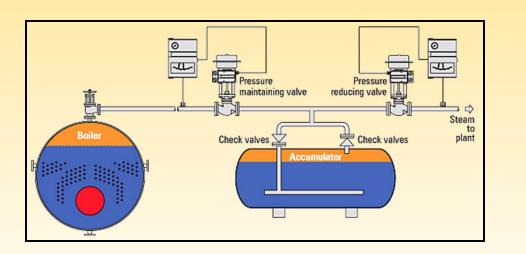
Minnesota Technical Assistance Program www.mntap.umn.edu

Areas for Improvement: Generation

Improve Economizer Operation

Areas for Improvement: Distribution

- Insulation
- Steam Trap Audit


Minnesota Technical Assistance Program www.mntap.umn.edu

UNIVERSITY OF MINNESOTA Driven to Discover™

Areas for Improvement: End-Users

- Steam Accumulator
- Wastewater Heat Exchanger

Economizer Operation

Economizer Operation

- Situation: Economizers operating inefficiently
 - Murray economizer 63% of expected heat recovery
 - Cleaver-Brooks economizers ~10% of expected heat recovery
- Solution: Repair exhaust stacks
- Results: Improve safety and efficiency

Minnesota Technical Assistance Program www.mntap.umn.edu

UNIVERSITY OF MINNESOTA Driven to Discover™

Economizer Operation

Economizer	Natural Gas Savings	Cost Savings	
Murray	1,500 mcf/yr	\$7,500 /yr	
Cleaver-Brooks #1	1,340 mcf/yr	\$6,900 /yr	
Cleaver-Brooks #2	620 mcf/yr	\$3,000 /yr	

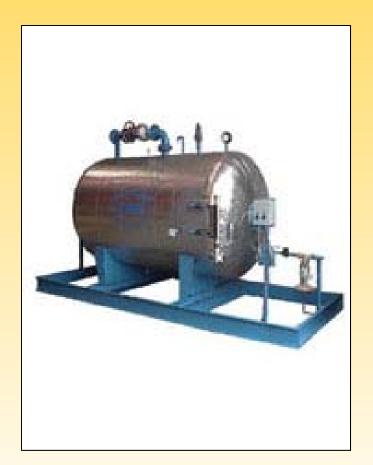
Minnesota Technical Assistance Program www.mntap.umn.edu

Wastewater Heat Exchanger

Minnesota Technical Assistance Program www.mntap.umn.edu

Wastewater Heat Exchanger

- Situation: Contaminated water exits cookers at 150°F
- Solution: Clean and repair existing heat exchanger
- Results: Recover a portion of energy to preheat boiler water


Wastewater Heat Exchanger

Implementation Cost	Natural Gas Savings	Cost Savings	Payback Period
\$1,900 ¹	6,630 mcf/yr ²	\$33,100 /yr	3 weeks

¹Assumed 50 man-hours of labor required.

²Heat exchanger allows make-up water to be heated from 60° F to 110° F.

Minnesota Technical Assistance Program www.mntap.umn.edu

- Situation: Equipment causes extreme fluctuations in steam demand
- Solutions: Install accumulator to buffer boiler from demand
- Results: Better quality steam, safer operation, fewer boilers required

Minnesota Technical Assistance Program www.mntap.umn.edu

Projected Annual Savings	3,570 mcf natural gas 17,000 kwh electricity 695,000 gallons water	\$23,400
Improve Burner Efficiency	900 mcf natural gas ¹	\$4,500
Improve Steam Quality	2,130 mcf natural gas 695,000 gallons water	\$10,600 \$4,200
Decrease Boiler Use	540 mcf natural gas ² 17,000 kwh electricity ³	\$2,700 \$900
Decrease Equipment Damage		\$500

¹Burner efficiency improved by 0.75%.

²900 hours of boiler operating time when all three boilers run simultaneously. 10 mcf/hr natural gas required to keep boiler 'on-line' without producing much steam.

³Electricity required for Cleaver-Brooks #2 burner air supply fan.

Minnesota Technical Assistance Program www.mntap.umn.edu

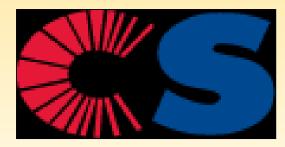
Implementation Cost	Natural Gas Savings	Cost Savings	Payback Period
\$184,000	3,570 mcf/yr	\$23,400 /yr	8 years

Steam Piping Insulation

Implementation Cost	Natural Gas Savings	Cost Savings	Payback Period
\$1,340 ¹	390 mcf/yr	\$1,970 /yr	8 months

¹Based on prices from McMaster-Carr 117. Cost includes 40 man-hours labor required.

Minnesota Technical Assistance Program www.mntap.umn.edu



Steam Trap Audit

Implementation Cost	Natural Gas Savings	Cost Savings	Payback Period
\$9,100 ¹	2,510 mcf/yr	\$12,500 /yr	9 months

¹Based on \$168 to replace 30 failed traps, plus 10% for shipping. Assuming 45 min labor per failed trap at \$38 per man-hour. Campbell-Sevey audit costs \$18/trap.

Thank you!

Questions?

