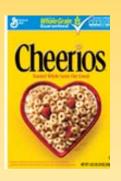


Molly Lee General Mills

Solvent Recovery and Reuse General Mills, Inc.

Molly Lee
Advisor: Jeff Becker

Minnesota Technical Assistance Program

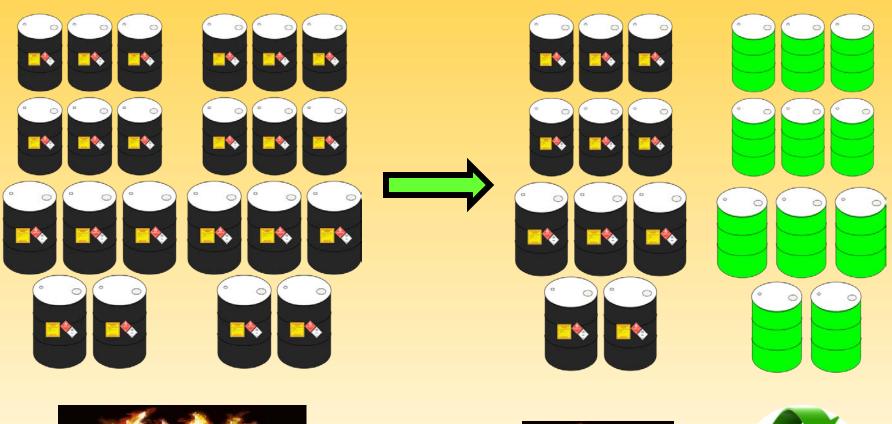


University of Minnesota

Driven to DiscoverSM

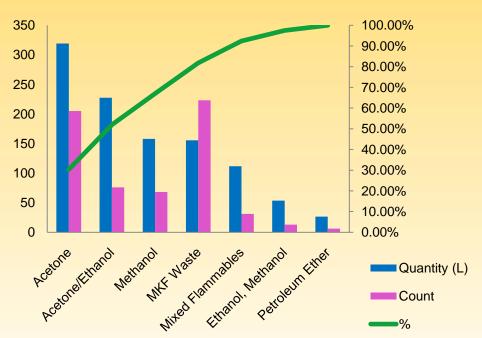
General Mills, Inc.

Sixth largest global food company



 Hazardous waste produced by analytical laboratories testing for food quality and safety

Motivation for Change

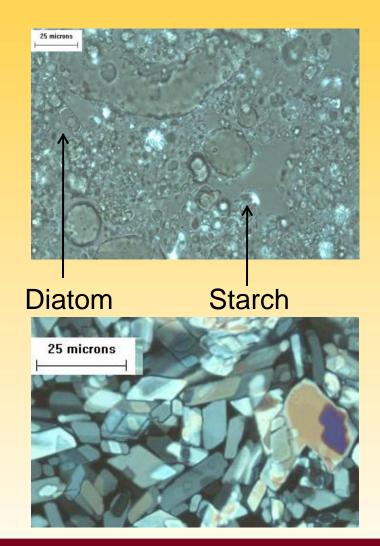

Reasons for MnTAP Assistance

- Process reduction
 - Hazardous waste generation
 - Virgin solvent use
 - Raw material and waste disposal costs
- Maintain small quantity generator size while enabling the lab to grow
- Increase safety and sustainability
- Strengthen relationship with the U of M
- Utilize technical support from MnTAP resources

Approach

Analyzed waste stream records from the past year

Wet Chemistry Waste Drum

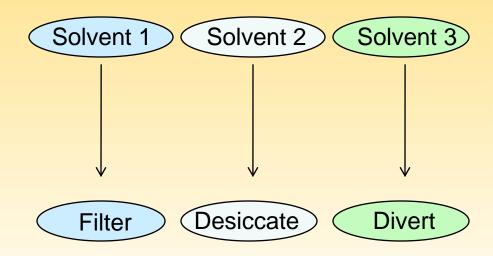


 Learned all processes contributing to waste drums by discussing solvent use with each of the lab analysts

Determining Inefficient Processes

- Identified and quantified contaminants in each of the individual waste streams
- Identified processes with least contaminants and easiest separations
- Received input from vendors, analysts, outside sources

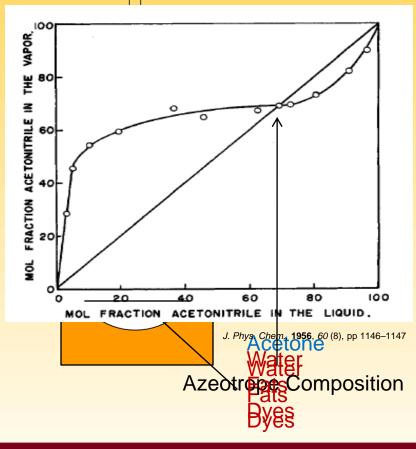
Solvent Recovery Overview


One Size Fits All

 The largest streams are all addressed by one single purification method

Solvent 2 Solvent 3 Distill

Customized


 Customized purification methods for each waste stream

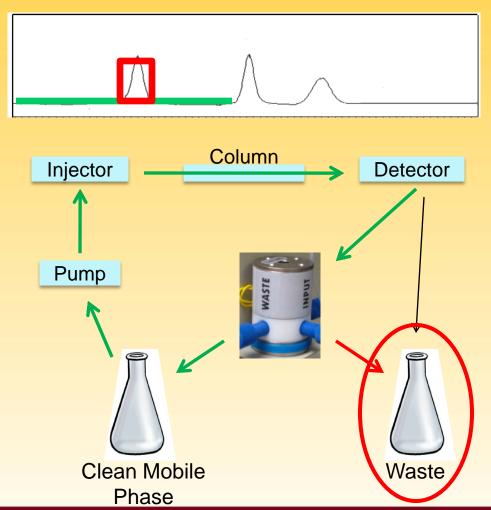
One Size Fits All: Distillation

- Largest streams could be collected separately and stored daily in each laboratory
- Separate materials based on volatility of components in mixture
- Challenges:
 - -Azeotropes
 - -Safety, Space

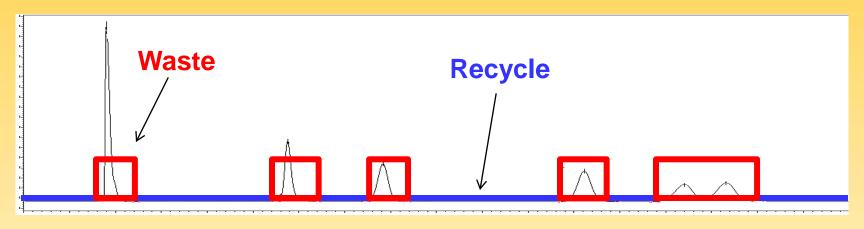
Vapor Liquid Equilibrium of Acetonitrile/Water Mixture

Recommended Process Change

 Implement a distillation unit able to distill acetonitrile/water, acetone, heptanes, and methanol waste streams, distilling one per day


Total savings/year	\$15,500
Total pounds/year saved	2,250
Percent of flammable waste	32%
Return on investment	1.25 years

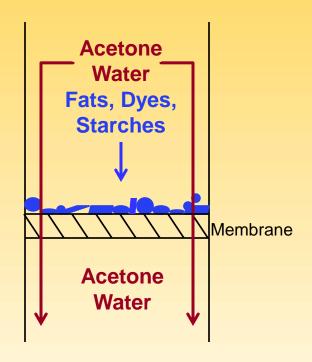
B/R Instrument Corporation, 9600 Recycling System


Customized Approach 1: Recover Clean Mobile Phase

- 185 gallons/year of acetonitrile/water used as the mobile phase for one HPLC assay
- Utilizes separation from HPLC column
- Clean solvent is sent back to mobile phase
- Distill waste for reuse

Successful Process Change

 Installed a Solvent Trak clean solvent diverting unit for one of the HPLC systems



Total savings/year	\$3,600
Total pounds/year saved	290
Percent of flammable waste	5%
Return on Investment	6 months

Could apply to 4 other HPLC systems at JFB and 5-10 sugars systems at manufacturing plants

Customized Approach 2: Acetone Recycle

- Wet chemistry analysis uses an estimated 85 gallons/year of acetone as a final rinse of one of the processes
- The waste stream contains small amounts of dyes, starches, fats, and water
- Use filtration to remove contaminants

Recommended Process Change

 Implement a nanofiltration system to purify the acetone waste stream through a ceramic membrane for reuse in the same process

Total savings/year	\$2,800
Total pounds/year saved	660
Percent of flammable waste	10%
Return on Investment (est.)	6 months

Water in recycled stream

Solution: desiccate, distill, or reuse for limited time

Personal Benefits

- Project management experience
- Direct chemical engineering and chemistry concepts able to be applied and practiced
- Pollution, environmental impact, and safety models learned
- Networking
- Customer relation experience with analytical laboratory

Thank You

- All analysts at General Mills who provided information, answered questions, and collected separate waste streams
- Vendors and other outside sources
- Special thanks to:

General Mills: Carolyn Sampson, Brett Post, Brooke Vetter, Paul Gould, Tim Peters

MnTAP: Jeff Becker, Krysta Larson

Vendors: ChromTech, NexGen Envirosystems,

B/R Instruments Corporation