Minnesota Technical Assistance Program

Helping Minnesota businesses maximize resource efficiency, increase energy efficiency, reduce costs, and prevent pollution

Reducing Energy Use and Oil Mist Generation

Roberts Automatic

Chris Iacono MnTAP Intern 2009 Advisor: Karl DeWahl

Company Overview (Not for Roberts Presentation)

- Metal parts manufacturing job shop
 - -Automotive
 - -Aerospace
 - -Consumer

Automatic machines
 -High production
 -High precision

MnTAP Overview

- <u>Minnesota Technical Assistance Program</u> - University of Minnesota outreach program
- Services for Minnesota businesses
 - Minimize waste and pollution
 - Resource efficiency
 - Energy reduction
- Intern program

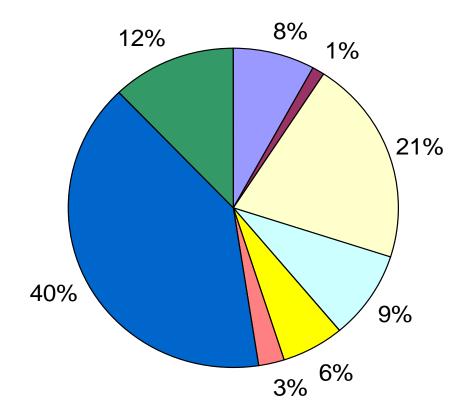
Motivations for Change

• Production is down – energy overhead costs significant

- Physical evidence of oil misting
- Facility equipment is aging

Reasons for MnTAP Assistance

• Identify and improve large energy consumers


• Quantify and reduce oil mist levels

• Incentives for replacing equipment

• Better understanding of ventilation

Approach

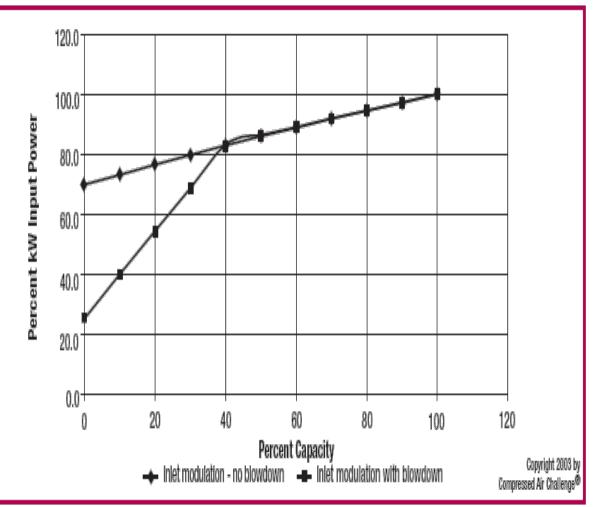
• Energy consumption audit, 2,300,300 kWh annually

Shop Rooftop Units
 Office Rooftop Units
 Air Compressors
 Process Chillers
 Air Filtration Equipment
 Exhaust Ventilation
 Machining Equipment
 Lighting

Approach

• Measured oil mist levels

- Identified air treatment equipment
 - -Mist collectors
 - -Air cleaners
 - -HVAC

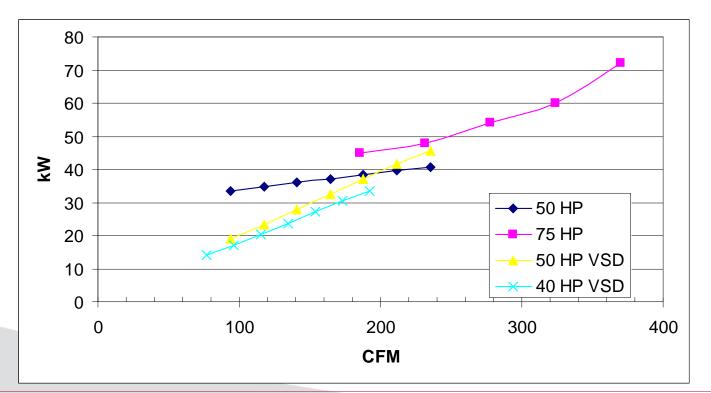


Determining Inefficient Processes

- Leak test
- Datalogging
- Effectiveness of air treatment equipment
- Compressed air requirements
- Air balance
- Spoke to service technicians

Compressed Air Controls

- Background
 - Adjusts volume of air produced
 - Two compressors
- Problem
 - Modulation inefficient



Compressed Air Controls

• Solution

-Tested load/unload operation on larger unit

-Equipment improvement

P Minnesota Technical Assistance Program

• Problem

- -40 CFM, 17 % capacity
- No repair routine
- Solution
 - -Leak tag system
- Realizing repairs
 - 50 HP, \$500/yr
 - -75 HP, \$1,000/yr
 - VSD, \$1,500/yr

Weekend Air Compressor Use

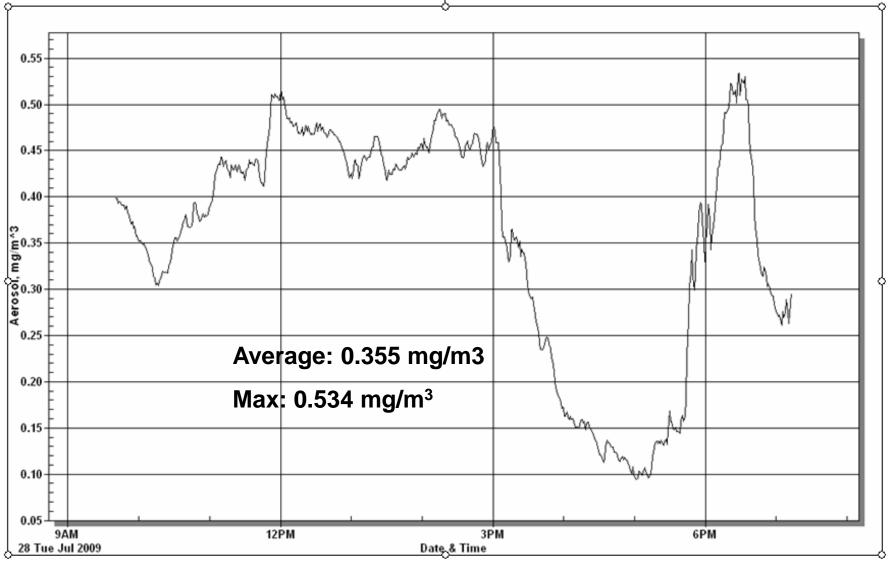
• Background

-Stays on for "lights out" shift

• Problem

-High cost for small air volume

- Solution
 - Use smaller compressor
 - Master switch for shutdown



- Background
 -OSHA PEL = 5.0 mg/m³
 -NIOSH REL = 0.5 mg/m³
- Problem

-Visible haze, odor, slippery floors, exposure

- Solution
 - -Evaluate current levels
 - -Find and reduce high sources

- High sources
 - -CNC chip conveyors exits, 15.0 mg/m³
 -Acme mach. 16, 23.0 mg/m³
 -Integrex conveyor, 30.0 mg/m³
- Mist collector good practices
 - -Relocate units as jobs change
 - -Block unused hoses
 - -Davenport door positioning

Ventilation

- Air-cooled condenser exhaust
 - Continuous 6,000 CFM exhaust
 - 0.4 air changes/hr
 - Cooling costs \$400/yr
 - Design intent
- Compressor room manual louver
 - Heat recovery
 - Cooling costs \$1,500/yr
 - Rooftop unit alternative

Successful Process Changes (Style 1)

- Small compressor for weekend use
 \$2,000/yr saved
- Recommended leak tag method
 -Potential \$500-\$1,000 /yr savings
- Identified oil mist contributors
 - -Sources as high as 30 mg per cu. meter

Successful Process Changes (Style 2)

- Implemented estimated savings
 - \$ _____
- Long-term potential savings
 \$
- Mist reduction
 - ____ mg/hour oil (need to do more work to determine this figure)

Personal Benefits

- Project ownership
- Experience in a new industry setting
- Hands-on data collection, testing

Questions?

