Neutralization Optimization
Minneapolis Water Works

Gina Sternberg
MnTAP Supervisor: Karl DeWahl
Company Supervisors: Annika Bankston, Steve Bros

University of Minnesota
Driven to Discover℠
Facility Background

• Minneapolis Water provides tap water to Minneapolis and surrounding communities

• Produces ~57 million gallons of water per day

• Columbia Heights Membrane Plant
 • Ultrafiltration to remove impurities
 • Uses hollow fiber membranes
Project Background: Backwashes

• Backwashes clean filters

• 2 types of chemically enhanced backwashes (CEB)
 • CEB1: Sodium hypochlorite (bleach)
 • Sterilizes filter membranes
 • CEB2: Sodium bisulfite (SBS) and hydrochloric acid (HCl)
 • Removes fouling, particularly ferric chloride coagulant
Project Background: Neutralization

- Chemical backwashes produce waste
- Neutralization process:
 - Completely automated
 - Waste is sent to neutralization tank after backwash
 - Raw chemicals added to neutralize harmful reactions
 - Neutralized waste eventually added back in Mississippi River
- Limits:
 - pH = 5.4-8.8
 - ORP = 200-500 mV
Motivations for Change

- $30,000 a year on neutralization chemicals
- More neutralization chemicals means more salts in the water
- Salts a concern, though discharge is within permit
- 40,000 lbs Na+ per year added to water from neut chems

Annual Neutralization Chemical Use (thousands of gallons)
Project Overview

• **Goal:** to Reduce Raw Chemicals Used in Neutralization

• **Areas of interest:**

 • **Major:**
 • Self-neutralization – complete

 • **Minor:**
 • Tank mixing – complete
 • Sources of variability in neutralization – complete
 • Re-examine ORP limits – progress, incomplete
Self-Neutralization

• CEB2 (sodium bisulfite and HCl) always followed by CEB1 (bleach)
• Currently, each wash is neutralized separately
• Self-Neutralization
 • Add CEB2 and CEB1 together to partially neutralize before adding raw chemicals
Current Method:

1. **Neutralization Tank “A”**
 - **Input**: CEB1 (bleach), SBS, NaOH
 - **Output**: Neutralized Waste

2. **Neutralization Tank “B”**
 - **Input**: CEB2 (SBS), Neutralized Waste
 - **Output**: Neutralized Waste

Key Chemicals:
- SBS
- NaOH
- Bleach
Self-Neutralization:

Neutralization Tank “A”

- CEB2 (SBS)
- CEB1 (Bleach)

Input:
- SBS
- NaOH

Output:
- Neutralized Waste
Findings

• Full scale tests succeeded
 • Reduces raw chemical demand
 • Requires no new equipment
 • Requires a self-neutralization routine to be programmed

• Around 1,500 self-neutralizations per year possible

• Savings: $12,000 a year

Annual Chemical Use (thousands of gallons)

- **NaOH**
 - Currently Used
 - Used with Self-Neut

- **SBS**
 - Currently Used
 - Used with Self-Neut

- **Bleach**
 - Currently Used
 - Used with Self-Neut
Findings: Summary

<table>
<thead>
<tr>
<th>Waste reduction option</th>
<th>Change Type</th>
<th>Waste reduced (per year)</th>
<th>Implementation cost</th>
<th>Cost savings (per year)</th>
<th>Payback period</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-Neutralization Procedure change</td>
<td></td>
<td>34,000 lbs SBS 80,000 lbs Bleach 26,000 lbs NaOH</td>
<td>$2,200</td>
<td>$12,000</td>
<td>2.2 months</td>
<td>Planned 2018</td>
</tr>
</tbody>
</table>
Tank Mixing

• Mixing a concern with self-neutralization
 • Two batches at once = larger volume to mix
Findings

• Mixing appears adequate
 • Surface visibly disturbed by mixing
 • Measurements relatively constant as tank empties

• Self-neutralization requires more mixing time
 • ~6 min for pH to stabilize, much longer for ORP
 • 10 minutes recommended to mix self-neut batch

• Recommendation: Perform maintenance on system to ensure no blockages
Findings: Summary

<table>
<thead>
<tr>
<th>Waste reduction option</th>
<th>Change Type</th>
<th>Waste reduced (per year)</th>
<th>Implementation cost</th>
<th>Cost savings (per year)</th>
<th>Payback period</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance on Tank Mixing</td>
<td>Procedure change</td>
<td>430 lbs SBS, 300 lbs Bleach, 290 lbs NaOH</td>
<td>$800</td>
<td>$90</td>
<td>8.9 years</td>
<td>Planned Sept 2017</td>
</tr>
</tbody>
</table>
Sources of Variability

• With more consistency, more efficiency is possible

• No correlations between initial and final conditions found
 • Tank Level
 • Unit distance from neut tank
 • Starting ORP and pH in tank

• Potential source:
 • Pumps for same chemical calibrated differently

• Recommendation: Recalibrate pumps, particularly bleach and NaOH
Pump Recalibration Summary

<table>
<thead>
<tr>
<th>Waste reduction option</th>
<th>Change Type</th>
<th>Waste reduced (per year)</th>
<th>Implementation cost</th>
<th>Cost savings (per year)</th>
<th>Payback period</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recalibrate Pumps</td>
<td>Procedure change</td>
<td>4,000 lbs NaOH</td>
<td>$400</td>
<td>$300</td>
<td>1 year, 4 months</td>
<td>Planned late 2017</td>
</tr>
</tbody>
</table>
Summary Table

<table>
<thead>
<tr>
<th>Waste reduction option</th>
<th>Change Type</th>
<th>Waste reduced (per year)</th>
<th>Implementation cost</th>
<th>Cost savings (per year)</th>
<th>Payback period</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-Neutralization Procedure change</td>
<td>Procedure change</td>
<td>34,000 lbs SBS 80,000 lbs Bleach 26,000 lbs NaOH</td>
<td>$2,200</td>
<td>$12,000</td>
<td>2.2 months</td>
<td>Planned 2018</td>
</tr>
<tr>
<td>Recalibrate Pumps Procedure change</td>
<td>Procedure change</td>
<td>4,000 lbs NaOH</td>
<td>$400</td>
<td>$300</td>
<td>1 year, 4 months</td>
<td>Planned late 2017</td>
</tr>
<tr>
<td>Maintenance on Tank Mixing Procedure change</td>
<td>Procedure change</td>
<td>430 lbs SBS 300 lbs Bleach 290 lbs NaOH</td>
<td>$800</td>
<td>$90</td>
<td>8.9 years</td>
<td>Planned Sept 2017</td>
</tr>
</tbody>
</table>
Future Work

• Continue investigating ORP
 • Determine new limits?
 • Changes in ORP from exposure to air?

• Follow-up on pump recalibration
Personal Benefits

- Balancing independent work vs asking for help
- Planning steps toward a complex goal
- Designing experiments
- Learning to get the information I need from the data I have
Questions?