Water Conservation at
Aqseptence Group

Ryan Pauly
MnTAP Advisor: Jane Paulson
On-site Supervisor: Paul Johnson
Company Overview

- Headquartered in Germany
- Collection of water technology companies
- Johnson Screens
 - New Brighton
 - 1904 by Edward Johnson
 - Continuous slot wire wrapped screen
 - Industrial filters and water wells
Products

- Continuous wire wrapped screens
 - Water intake
 - Wells
 - Decoration
Motivations For Change

• **Current situation**
 • 10 million gallons of water per year
 • High levels of chromium
 • Water recycling systems need improvement

• **Goals**
 • Reduce water usage by 30%
 • Recycled water for NSF products
Reasons for MnTAP Assistance

• Audit water usage
 • Evaluate largest sources of consumption
 • Evaluate current recycling systems

• Evaluate strategies to:
 • Improve recycling systems
 • Reduce source water
 • Remove chromium from recycled water

• Determine savings for final recommendations
Approach

• Investigate water consumption processes
 • Map water flow
 • Quantify water usage

• Evaluate current recycling systems
 • Identify successes and shortcomings
 • Understand shortcomings

• Identify material flow
Approach

- Identify top water usage areas
 - Screen Machines > Wire Mill
- Blueprint for recycling system
- Chromium removal
- Address remaining areas
Approach

• Identify top water usage areas
 • Screen Machines > Wire Mill
• Blueprint for recycling system
• Chromium removal
• Address remaining areas
Contaminated Water

- Small particulates and burnt oil
- Oil-water emulsion
- Current recycling system
 - Oil-water coalescing separator
 - Flow pattern in reservoir
 - Centrifuge
Recycling System

- Proposed system: centrifuge and ultrafiltration
 - Centrifuge: particles > 74 microns
 - Ultrafiltration: oil-water emulsion
- Pilot system
 - 4 machines
Recycling System

• Process flow diagram
Recycling System

• New process flow diagram
Recommendations: Recycling System

<table>
<thead>
<tr>
<th>Recycling System</th>
<th>Water Reduced (gallons per year)</th>
<th>Implementation Cost</th>
<th>Cost Savings (per year)</th>
<th>Payback Period</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large Diameter Implemented</td>
<td>940,000</td>
<td>$4,000</td>
<td>$7,000</td>
<td>6.9 months</td>
<td>Implemented*</td>
</tr>
<tr>
<td>Large Diameter Recommended</td>
<td>1,170,000</td>
<td>$6,000</td>
<td>$8,600</td>
<td>8.4 months</td>
<td>Recommended</td>
</tr>
<tr>
<td>Small Diameter</td>
<td>4,000</td>
<td>$4,000</td>
<td>$30</td>
<td>130 years</td>
<td>Recommended</td>
</tr>
<tr>
<td>Total</td>
<td>2,100,000</td>
<td>$14,000</td>
<td>$15,600</td>
<td>10.8 months</td>
<td>--</td>
</tr>
</tbody>
</table>

Additional ultrafiltration columns need to be added
Chromium Removal

• NSF certification
• Proposed solution: ion exchange
 • Regenerable resin
 • Pilot scale system
 • Colorimeter
Chromium Removal

- Process flow diagram
- Multiple location options
 - Following ultrafiltration
 - Next to reservoir
- Additional cost for automation
- No downtime
Recommendations: Chromium Removal

<table>
<thead>
<tr>
<th>Ion Exchange Location</th>
<th>Water Reduced (gallons per year)</th>
<th>Implementation Cost</th>
<th>Cost Savings (per year)</th>
<th>Payback Period</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Next to Reservoir</td>
<td>120,000</td>
<td>$4,500</td>
<td>$870</td>
<td>5.2 years</td>
<td>Recommended</td>
</tr>
<tr>
<td>Following Ultrafiltration</td>
<td>120,000</td>
<td>$2,700</td>
<td>$870</td>
<td>3.1 years</td>
<td>--</td>
</tr>
</tbody>
</table>
Fine Wire Screen Machines

- Electronics cooling water
- Quenching water
- Solution
 - Closed loop system with chiller
 - Recycling system
Recommendations: Fine Wire

<table>
<thead>
<tr>
<th>Waste Reduction Option</th>
<th>Water Reduced (gallons per year)</th>
<th>Percent Reduction</th>
<th>Implementation Cost</th>
<th>Cost Savings (per year)</th>
<th>Payback Period</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closed Loop Cooling Water</td>
<td>780,000</td>
<td>100%</td>
<td>$4,500</td>
<td>$4,700</td>
<td>11.5 months</td>
<td>Recommended</td>
</tr>
<tr>
<td>Recycling System</td>
<td>390,000</td>
<td>95%</td>
<td>$3,700</td>
<td>$2,900</td>
<td>15.3 months</td>
<td>Recommended</td>
</tr>
<tr>
<td>Total</td>
<td>1,170,000</td>
<td>--</td>
<td>$8,200</td>
<td>$7,600</td>
<td>13 months</td>
<td>--</td>
</tr>
</tbody>
</table>
Quenching Water

- Excess water applied to weld
- Limited control
- Solution
 - Globe valves and flow meters
Recommendations: Quenching Water

<table>
<thead>
<tr>
<th>Quenching Water Reduction</th>
<th>Water Reduced (gallons per year)</th>
<th>Percent Reduction</th>
<th>Implementation Cost</th>
<th>Cost Savings (per year)</th>
<th>Payback Period</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>With Recycling Systems</td>
<td>82,000</td>
<td>29%</td>
<td>$3,300</td>
<td>$600</td>
<td>5.5 years</td>
<td>Recommended</td>
</tr>
<tr>
<td>Without Recycling Systems</td>
<td>175,000</td>
<td>29%</td>
<td>$3,300</td>
<td>$1,700</td>
<td>2 years</td>
<td>--</td>
</tr>
</tbody>
</table>
Wire Mill

• Wire washing stage
• Minimal contaminants in samples
• Air wipe in Use
• Suggestion
 • Shutoff water
 • Further testing necessary
Recommendations: Wire Mill

<table>
<thead>
<tr>
<th>Waste Reduction Option</th>
<th>Water Reduced (gallons per year)</th>
<th>Implementation Cost</th>
<th>Cost Savings (per year)</th>
<th>Payback Period</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cleaning Water in Wire Mill</td>
<td>2,070,000</td>
<td>--</td>
<td>$15,400</td>
<td>--</td>
<td>Testing Required</td>
</tr>
</tbody>
</table>
Summary

<table>
<thead>
<tr>
<th>Waste Reduction Option</th>
<th>Water Reduced (gallons per year)</th>
<th>Percent Reduction</th>
<th>Implementation Cost</th>
<th>Cost Savings (per year)</th>
<th>Payback Period</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large Diameter Implemented</td>
<td>940,000</td>
<td>95%</td>
<td>$4,000</td>
<td>$7,000</td>
<td>6.9 months</td>
<td>Implemented*</td>
</tr>
<tr>
<td>Large Diameter Recommended</td>
<td>1,170,000</td>
<td>95%</td>
<td>$6,000</td>
<td>$8,600</td>
<td>8.4 months</td>
<td>Recommended</td>
</tr>
<tr>
<td>Small Diameter</td>
<td>4,000</td>
<td>95%</td>
<td>$4,000</td>
<td>$30</td>
<td>130 years</td>
<td>Recommended</td>
</tr>
<tr>
<td>Ion Exchange from Reservoir</td>
<td>120,000</td>
<td>100%</td>
<td>$4,500</td>
<td>$870</td>
<td>5.2 years</td>
<td>Recommended</td>
</tr>
<tr>
<td>Fine Wire Screen Machines</td>
<td>1,170,000</td>
<td>> 95%</td>
<td>$8,200</td>
<td>$7,600</td>
<td>13 months</td>
<td>Recommended</td>
</tr>
<tr>
<td>Cleaning Water in Wire Mill</td>
<td>2,070,000</td>
<td>--</td>
<td>--</td>
<td>$15,400</td>
<td>--</td>
<td>Testing Required</td>
</tr>
<tr>
<td>Quenching Water</td>
<td>82,000</td>
<td>29%</td>
<td>$3,300</td>
<td>$600</td>
<td>5.5 years</td>
<td>Recommended</td>
</tr>
<tr>
<td>Total (Excluding Wire Mill)</td>
<td>3,500,000</td>
<td>37%</td>
<td>$30,000</td>
<td>$25,000</td>
<td>14.4 months</td>
<td>--</td>
</tr>
</tbody>
</table>

Additional ultrafiltration columns need to be added
Personal Benefits

• Interaction with wide variety of people
• Application of principles learned in school
• Design and construction of recycling system
Questions?