Lean Green Project
Christopher Lanari
Advisor: Jane Paulson

Minnesota Technical Assistance Program

University of Minnesota
Overview
Overview: The Company, Uponor

• Polyethylene pipe (PEX) extrusion
• Plumbing, radiant heating/cooling, fire safety
 – Residential
 – Commercial
Overview: The Project

• New extruder system
 – Faster production
 – Higher operation cost
 • Same proportion as production gain
 – No net gain for Uponor

• **Goal:** Minimize operational costs through reduction of energy, water, and other inputs, using Lean tools and philosophies
Approach: Lean Manufacturing

- Philosophy based on continuous improvement
 - Minimize waste
 - Defective product
 - Overproduction
 - Waiting
 - Non-/Under-utilized talent
 - Transportation
 - Inventory
 - Motion
 - Excessive processing
Extrusion Overview
Extrusion Overview
Prioritizing Efforts

Tools
Value Stream Maps

• Lean visual tool to help analyze a process’ current state and plan a future state
Value Stream Maps

- Enterprise MN
- Energy (Electricity)
- Water
- Compressed Air
- Nitrogen Gas
Pareto Charts

- Highlights high-impact factors
 - Histogram + Cumulative Percentages

Example Pareto Chart of Client Complaints per Product

- **Number of complaints**
 - Vital few
 - Trivial many

Cumulative %

Minnesota Technical Assistance Program
A3 Project Management

- Story of a project
 - Background/Problem
 - Root Cause Analysis
 - Goals
 - Action Items
 - Follow Up/Verification

Minnesota Technical Assistance Program

UNIVERSITY OF MINNESOTA
Action Item: Optimize Curing

• Initial State
 – All settings at 100%
 – Product within specifications

• Final State
 – All settings at 70%
 – Product still within specifications
 – $55,300 annual savings
Action Item: Insulate Extruder

• Reduce heat loss to reduce consumed electricity
 – Heating elements
• 200 – 250 °C
 – Reduce to 43 °C
• Energy reduction
 – $2,600 annual savings
• More safe workplace
Action Item: Switch To Comp. Air

- **Initial State**
 - Nitrogen

- **Final State**
 - Compressed Air
 - $1,300 annual savings
 - No 100% N_2 fumes released
Action Item: Redundant Blower

- **Initial State**
 - Cooling Tank 1 → Cooling Tank 2 → Air Blower → Measure → Cooling Tank 3 → Air Blower → Measure → Coil

- **Final State**
 - Cooling Tank 1 → Cooling Tank 2 → Cooling Tank 3 → Air Blower → Measure 1 → Measure 2 → Coil

- $650 annual savings
Action Items

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Initial State</th>
<th>Future State</th>
<th>Reduction</th>
<th>Annual Savings</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimize Curing Process</td>
<td>115.2 kW</td>
<td>38.4 kW</td>
<td>76.8 kW</td>
<td>$55,300</td>
<td>In Progress (95%)</td>
</tr>
<tr>
<td>Insulate Extruder Barrel</td>
<td>3.7 kW</td>
<td>0.1 kW</td>
<td>3.6 kW</td>
<td>$2,600</td>
<td>In Progress (75%)</td>
</tr>
<tr>
<td>Switch from Nitrogen to Compressed Air</td>
<td>12 ft³/hr N₂</td>
<td>12 ft³/hr Air</td>
<td>12 ft³/hr N₂</td>
<td>$1,300</td>
<td>In Progress (95%)</td>
</tr>
<tr>
<td>Remove Redundant Blower</td>
<td>0.9 kW</td>
<td>0 kW</td>
<td>0.9 kW</td>
<td>$650</td>
<td>In Progress (50%)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>119.8 kW, 12 ft³/hr N₂</td>
<td>38.5 kW, 12 ft³/hr Air</td>
<td>81.3 kW, 12 ft³/hr N₂</td>
<td>$59,800</td>
<td></td>
</tr>
</tbody>
</table>
Internship Benefits

• Project Management
• Models
 – Cost Analysis
 – Energy Flow
• Lean Manufacturing Principles
Q & A