Water and Energy Conservation at R&D Systems

Omar Hammami
MnTAP Advisor: Jon Vanyo
R&D Systems Supervisors: David Mack and David Clausen

University of Minnesota
Driven to Discover℠
About R&D Systems

• Laboratories located in Minneapolis, Minnesota
• Produce tools for biological research such as antibodies, enzyme assay kits, and recombinant proteins
Motivation

• Go green
 • Laboratories use 5-10 times more resources per sq. ft. than office spaces\(^1\)
 • Green Lab initiatives
 • Company on board with reducing resource consumption

• Financial Savings
 • Sewer and Water Access charges
 • Electricity

1) www3.epa.gov
Project Goals

• Assess water conservation opportunities:
 • Purified water plants
 • Point of use polishers
 • Autoclaves
 • Washers

• Assess energy saving possibilities:
 • Ultra Low Temperature (ULT) Freezers
 • Purified water plants
Approach

1. **Identify target**
 - Measure consumption of resources
Approach

1. Identify target
 • Measure consumption of resources

2. Gather information
 • People!
 • Suppliers and manufacturers
 • Internet
 • Data collection
Approach

1. Identify target
 • Measure consumption of resources

2. Gather information
 • People!
 • Suppliers and manufacturers
 • Internet
 • Data collection/ testing

3. Identify solutions
 • KISS (Keep It Simple Stupid Silly)

4. Assess viability

5. Plan for implementation
Water Purification Process

- Feed water pretreatment
- Reverse Osmosis (RO)
- Storage Tank/Recirculation
- Point-of-Use Polishing
Reduce flow rate of purge stream from point of use polishers (PUPs)

• Purge stream on 16 PUPs drains 1.64 million gpy
 • Flow rates vary from 3.2 to 16 gph (0.2 to 1 liter/min)
Reduce flow rate of purge stream from point of use polishers (PUPs)

• Save 1.6 million gpy by using smaller orifices (97% reduction)
 • Flow rate reduced to 0.16 gph (10 mL/min)
 • Testing on two units showed no change in water quality, bacterial growth
 • Save $14,640 on water
 • Save 8000 kWh ($630)
 • Payback time: 20 days

• Implementation: in the good hands of QA

Picture: www.industrialspec.com
Increase Recovery of RO Units
By Using Smaller Venturi Injectors

• Four units – four different recoveries
 • 30%, 50%, 60%, 75%

• Pretreatment system upgraded over the years
 • Concentrate wasn’t much worse than city water
 • Could push units harder
Increase Recovery of RO Units
By Using Smaller Venturi Injectors

• Improve recovery with smaller venturi injectors
 • venturi injectors are used to generate vacuum
 • Smaller venturi injector leads to less waste
 • Maintains adequate vacuum
• Save 520,000 gpy by replacing venturi injector on two RO Units
 • $4,700 Payback: 4 months

Picture: mazzei.net/venturi_injectors/
Increase Recovery and Productivity of RO Unit
By Adding Additional Membranes

• 2-membrane unit ran at 30% recovery, by far the lowest
 • Produced permeate at half speed, meaning pump needed to run more

• Add two membranes and smaller venturi injector
 • Save 230,000 gpy and 400 kWh
 • Save $2,100, payback 14 months

• Implementation: coming soon
Increase Temperature of ULT Freezers from -80 °C to -70 °C

• Each unit consumes as much energy as a single family home
 • 103 units total (and counting)

• -80 °C not essential for preservation of samples
 • Marketing by manufacturers
 • SOP calls for <-60 °C

• Stanford, Harvard and others have switched to -70 °C
Increase Temperature of ULT Freezers from -80 °C to -70 °C

• Raising the temperature could save 1000 kWh/year per unit
 • Plus increase freezer lifespan

• Potential to save 100,000 kWh and $8,000 per year with no cost

• Work to be done
 • Validate change with QA
Recommendations Summary

<table>
<thead>
<tr>
<th>Project</th>
<th>Environmental Savings</th>
<th>Annual Savings</th>
<th>Payback Period</th>
<th>Implementation Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduce PUP purge with small orifice</td>
<td>1.6 mil gpy 8000 kWh</td>
<td>$15,200</td>
<td>20 days</td>
<td>In progress</td>
</tr>
<tr>
<td>Increase RO recovery with small venturi</td>
<td>520,000 gpy</td>
<td>$4,700</td>
<td>4 months</td>
<td>In progress</td>
</tr>
<tr>
<td>Increase RO recovery with added membranes</td>
<td>230,000 gpy 400 kWh</td>
<td>$2,100</td>
<td>14 months</td>
<td>In progress</td>
</tr>
<tr>
<td>Increase Temp. of ULT Freezers to -70 °C</td>
<td>1000 kWh per unit</td>
<td>$80 per unit</td>
<td>Immediate</td>
<td>Recommended</td>
</tr>
<tr>
<td>Other projects</td>
<td>400,000 gpy 8700 kWh</td>
<td>$6,900</td>
<td>Immediate- 2 years</td>
<td>Varied</td>
</tr>
</tbody>
</table>
Recommendations Summary

Total annual savings:
- >2 million gallons
- 17,000 kWh
- $20,000

- Cut total industrial water use by 15%
Personal Benefits: What I Learned

• Organizational skills
 • Not pictured: 40+ tabs open in Google chrome
Personal Benefits: What I Learned

• Change takes time
 • Summers are short
Personal Benefits: What I Learned

• Never Hesitate
 • You’ll regret it
Acknowledgements

- David Mack
- David Clausen
- Jon Vanyo
- Joe Tholen
- John Beauchamp
- Robert Kubik
- Fitsum Wolde
- Michael Wu-Obrien
- Daniel Lundquist
- Alicia McDonald
- Barry Martin

- Keith Godfrey
- Jake Sandberg
- Isaac Hoff
- Lee Peters
- Dan Flemino
- Katia Pickar
- Xcel Energy
- MCES
- Et al.
Thank you!

Questions?

This project was sponsored in part by Metropolitan Council Environmental Services and Xcel Energy