St. Croix Forge

Amanda Spencer
Advisor: Karl DeWahl

Minnesota Technical Assistance Program

University of Minnesota
Introduction
Company Overview

- Steel Horseshoes
Company Overview

- Steel Horseshoes
 - Induction Heaters
Company Overview

- Steel Horseshoes
 - Induction Heaters
 - Cooling System
Company Overview

- Steel Horseshoes
 - Induction Heaters
 - Cooling System
 - Forge Press
Company Overview

- Steel Horseshoes
 - Induction Heaters
 - Cooling System
 - Forge Press
 - Warehouse
Incentives for Change

• Reduce energy use
 – 4,600,000 kWh
 – $390,000

• Reduce material use

Energy Consumption

- Process Cooling: 9%
- Pumps: 7%
- Air Compressor: 7%
- Forge Press: 10%
- Motor: 67%
- Induction Heaters: 6%
- Other: 0.5%
Project Overview

• Objectives
Project Overview

• Objectives
 – Process cooling
Project Overview

• Objectives
 – Process cooling
 – Grease application
Project Overview

• Objectives
 – Process cooling
 – Grease application
 – Etc.
Process Cooling Circulation
Process Cooling Circulation

Baseline System

Pump Curve

Flow (GPM)

Head (ft)
Process Cooling Circulation

Configuration Options

- All 4
- Single
- 2 Parallel
- 2 Series
- System

Graph showing head (ft) vs flow (GPM) for different configuration options.
Process Cooling Circulation

- Reduce 2 Pumps
Process Cooling Circulation

- Reduce 2 Pumps
Process Cooling Circulation

- Reduce 2 Pumps
 - $12,300/yr.
Process Cooling Circulation

- Reduce 2 Pumps
 - $12,300/yr.
- Install VFDs
Process Cooling Circulation

- Reduce 2 Pumps
 - $12,300/yr.
- Install VFDs
Process Cooling Circulation

- Reduce 2 Pumps
 - $12,300/yr.
- Install VFDs
Process Cooling Circulation

- Reduce 2 Pumps
 - $12,300/yr.
- Install VFDs
Process Cooling Circulation

- Reduce 2 Pumps
 - $12,300/yr.
- Install VFDs
 - $8,300/yr.

![Graph showing parallel pumps with lines for 4 and 6 lines flow, intercepts, and system performance.](image-url)
Grease Application

<table>
<thead>
<tr>
<th>Condition</th>
<th>Material</th>
<th>Cost</th>
<th>Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>14,000 lb.</td>
<td>$27,400</td>
<td>-</td>
</tr>
</tbody>
</table>
Grease Application

<table>
<thead>
<tr>
<th>Condition</th>
<th>Material</th>
<th>Cost</th>
<th>Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>14,000 lb.</td>
<td>$27,400</td>
<td>-</td>
</tr>
</tbody>
</table>
Grease Application

<table>
<thead>
<tr>
<th>Condition</th>
<th>Material</th>
<th>Cost</th>
<th>Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>14,000 lb.</td>
<td>$27,400</td>
<td>-</td>
</tr>
<tr>
<td>50% Rate</td>
<td>8,300 lb.</td>
<td>$16,300</td>
<td>$11,100</td>
</tr>
</tbody>
</table>
Grease Application

<table>
<thead>
<tr>
<th>Condition</th>
<th>Material</th>
<th>Cost</th>
<th>Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>14,000 lb.</td>
<td>$27,400</td>
<td>-</td>
</tr>
<tr>
<td>50% Rate</td>
<td>8,300 lb.</td>
<td>$16,300</td>
<td>$11,100</td>
</tr>
<tr>
<td>33% Rate</td>
<td>5,500 lb.</td>
<td>$10,800</td>
<td>$16,600</td>
</tr>
</tbody>
</table>
Other Projects

Cooling Tower Fans
• Disable two

Air Compressor
• Add tank

Natural Gas
• Unfeasible

Warehouse Fans
• Unfeasible
<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Waste/ energy reduced</th>
<th>Cost</th>
<th>Net Savings</th>
<th>Payback Period</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process cooling pumps</td>
<td>242,400 kWh/yr.</td>
<td>$1,490</td>
<td>$20,600/ yr.</td>
<td><1 month</td>
<td>considering contractor’s proposal</td>
</tr>
<tr>
<td>Cooling Tower Fans</td>
<td>6,520 kWh/yr.</td>
<td>N/A</td>
<td>$600/yr.</td>
<td>immediate</td>
<td>implemented</td>
</tr>
<tr>
<td>Grease Rate</td>
<td>5,700 lb.+/yr.</td>
<td>N/A</td>
<td>$11,200+/yr.</td>
<td>immediate</td>
<td>pending test results</td>
</tr>
</tbody>
</table>
Personal Benefits

- Application of knowledge
- Real-world experience
- New processes and equipment
- Technical communication
Questions?