Foundry Optimization for Air Quality Improvement

Smith Foundry

Al Muntasar Al Busaidy
MnTAP Supervisor: Jane Paulson
On-site Supervisor: Steven Coozennoy

University of Minnesota
Driven to Discover℠
Company Background

• Specialize in low/medium production of ductile and gray iron castings

• Use sand as molds and cores to shape their castings

• Located in Minneapolis (Phillips area)
Process

Sand Preparation

Silica sand + Clay, water, and additives

Muller

Green sand
Process

Sand Preparation

Mold Making

Green sand

Cope and drag of a mold
Process

- Sand Preparation
- Core Making
- Mold Making

Silica sand + Chemical binders

Cores

Sand mixer
Process

Sand Preparation

Core Making

Mold Making

Mold Pouring, Cooling

Pouring and cooling
Process

- Sand Preparation
- Core Making
- Mold Making
- Mold Pouring, Cooling
- Casting Shakeout

Separator

Shakeout
Process

Sand Preparation
 \[\rightarrow\]
 Mold Making
 \[\rightarrow\]
 Core Making
 \[\rightarrow\]
 Mold Pouring, Cooling

 \[\rightarrow\]
 Casting Shakeout

 \[\rightarrow\]
 Reclaimed sand

 \[\rightarrow\]
 Spent sand

 \[\rightarrow\]
 Dust

 \[\rightarrow\]
 Disposed

 \[\rightarrow\]
 Dust-Collector

Dust bag
Process

- Sand Preparation
- Mold Making
- Core Making
- Mold Pouring, Cooling
- Casting Shakeout
- Cleaning and Finishing

Reclaimed sand

Spent sand
- Disposed
- Dust
- Dust-Collector

Dust

Castings
Incentives for Change

• OSHA regulations
• Committed to the community/neighborhood
• Employees health

• Profitability:
 • Reduce operating costs
 • Eliminate defects
 • Speed up production
Approach to the Project

• Learn the production process
• Talk to operators and employees
• Identify areas for pollution & waste reduction, and efficiency improvement
• Set up meetings with vendors & experts
 • Baseline data needed
 • Recommendations
• Quantify inputs, outputs, and costs
• Request samples & Quotes
• Test samples
Background & Solutions
1) Core Sand Binders

• Two resins are mixed with the sand
• Binding effect is activated by catalyst

• Two systems:
 • 1) Fast-cure
 • 2) Slow-cure

• Annual usage (fast-cure):
 • 3000 lb. of resins
 • 50 lb. catalyst
Why Seek Alternative Binders?

• The **conventional binders** causes:

 • 268 lb. VOCs

 • 279 lb. Carbon monoxide

 • 54 lb. HAPs

 • 80 lb. Particulate matters

 (Every year)
Alternative Binders Reduction

- **The conventional binders** causes:
 - 268 lb. VOCs
 - 279 lb. Carbon monoxide
 - 54 lb. HAPs
 - 80 lb. Particulate matters

 (Every year)

<table>
<thead>
<tr>
<th>Alternative binders:</th>
<th>%Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>49 lb. LESS</td>
<td>13.1%</td>
</tr>
<tr>
<td>74 lb. LESS</td>
<td>26.3%</td>
</tr>
<tr>
<td>11 lb. LESS</td>
<td>21.0%</td>
</tr>
<tr>
<td>47 lb. LESS</td>
<td>58.5%</td>
</tr>
</tbody>
</table>
Recommendation – Sand Binders

<table>
<thead>
<tr>
<th>Pollution Reduction Option</th>
<th>Pollution Reduced</th>
<th>Implementation Cost</th>
<th>Cost Savings/Yr.</th>
<th>Payback Period</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch to alternative binders</td>
<td>49 lb. VOCs, 74 lb. CO, 11 lb. HAPs, and 47 lb. PM</td>
<td>$0</td>
<td>$900</td>
<td>Immediate</td>
<td>Recommended</td>
</tr>
</tbody>
</table>

- **Benefits:**
 - Improved air quality
 - Savings
2) Blackwater System

• **Background:**
 - Dust-collectors at shakeout and muller areas
 - The dust/sand has clay that is wasted

• **Cost of clay:**
 - $330/ton ($80,000/yr.)

• **How it works:**
 - Restores binding effect of clay
 - Replace conventional water source
Recommendation – Blackwater System

A study “Reining in Costs, Controlling Emissions” shows:
- 26-60 % Clay and coal
- 20-27 % Silica sand
- 19-70 % VOC during pouring, cooling, and shakeout

So far:
- Collected baseline data
- Sent samples of dust/sand for analysis
- Contact provider for next steps

The study by:
Rose Torielli, Fred Cannon, Robert Voigt, Penn State Univ., University Park, Pennsylvania; Timothy Considine, Univ. of Wyoming, Laramie, Wyoming; James Furness, Furness Newburge Inc., Versailles, Kentucky; John Fox, Lehigh Univ., Bethlehem, Pennsylvania; Jeff Goudzwaard, Neenah Industries Inc., Neenah, Wisconsin; and He Huang, URS Corp., Philadelphia
3) Mulling Machine

• **Currently:**
 - Mixing for 90 seconds before discharging batches

• **Problem:**
 - Under/Over mulling
 - Wasted energy
 - Wasted time

• **Opportunity:**
 - Install Mull-to-Energy system

• **How it works:**
 - Sensors tracking the energy added per batch
 - Discharge batch when energy reaches a plateau
Recommendation – “Mull-to-Energy”

<table>
<thead>
<tr>
<th>Waste Reduction Option</th>
<th>Waste Reduced</th>
<th>Implementation Cost</th>
<th>Cost Savings/Yr.</th>
<th>Payback Period</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mull-to-Energy System</td>
<td>120,000 kWh</td>
<td>$30,000</td>
<td>$8,400</td>
<td>3.6 Yrs.</td>
<td>Recommended</td>
</tr>
</tbody>
</table>

• So far:
 • Traced energy by data logger
 • Contacted system provider for recommendation

• Potential Savings:
 • Energy
 • Time
 • More consistent sand molds reduce molding defects and waste
4) Optimizing Sand Handling

- **Currently:**
 - Conveying system contains many 90-degree elbows
 - Conveyed at 12-15 psi

- **Problem:**
 - Silica sand grains can fracture as low as 10 psi
 - 2% of sand breaks down to inhalable particles

- **Opportunity:**
 - Replace with sweeps to reduce conveying pressure
Recommendation – Optimizing Sand Handling

<table>
<thead>
<tr>
<th>Waste Reduction Option</th>
<th>Waste Reduced</th>
<th>Implementation Cost</th>
<th>Cost Savings/Yr</th>
<th>Payback Period</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimizing piping design for new Silica Sand</td>
<td>25 tons silica sand</td>
<td>$4,200</td>
<td>$1,825</td>
<td>2.3 years</td>
<td>Under review</td>
</tr>
</tbody>
</table>

- **Benefits:**
 - Longer sand life
 - Reduced airborne particulate
 - Less dust to be collected and disposed

- **So Far:**
 - Scanning Electron Microscopy (SEM) test of sand before and after conveying
 - Check grains fracture

- Cost Savings per year: $1,825
- Payback Period: 2.3 years
- Status: Under review
Opportunity
5) Pneumatic to Electric Tools

• Currently:
 • Compressed air grinders

• Problem:
 • Wasted energy

• Opportunity:
 • Electric tools
Recommendation – Pneumatic to Electric

<table>
<thead>
<tr>
<th>Waste Reduction Option</th>
<th>Waste Reduced</th>
<th>Implementation Cost</th>
<th>Cost Savings/Yr.</th>
<th>Payback Period</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch from pneumatic to electric tools</td>
<td>170,000 kWh</td>
<td>$3,200</td>
<td>$12,000</td>
<td>2 Months</td>
<td>Recommended</td>
</tr>
</tbody>
</table>

Status:
- Recommend testing before switching
Benefits Table

<table>
<thead>
<tr>
<th>Waste Reduction Option</th>
<th>Waste Reduced</th>
<th>Implementation Cost</th>
<th>Cost Savings/Yr</th>
<th>Payback Period</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch to alternative binders</td>
<td>49 lb. VOCs, 74 lb. CO, 11 lb. HAPs, and 47 lb. PM</td>
<td>$0</td>
<td>$900</td>
<td>Immediate</td>
<td>Recommended</td>
</tr>
<tr>
<td>Blackwater system</td>
<td>60 tons clay, 250 tons silica sand, and 19% VOCs during pouring, cooling, and shakeout.</td>
<td>$250,000</td>
<td>$30,000</td>
<td>8.3 Years</td>
<td>Under review</td>
</tr>
<tr>
<td>Mull-to-Energy System</td>
<td>120,000 kWh</td>
<td>$30,000</td>
<td>$8,400</td>
<td>3.6 Yrs.</td>
<td>Recommended</td>
</tr>
<tr>
<td>Optimizing piping design for new Silica Sand</td>
<td>25 tons silica sand</td>
<td>$4,200</td>
<td>$1,825</td>
<td>2.3 years</td>
<td>Under review</td>
</tr>
<tr>
<td>Switch from pneumatic to electric tools</td>
<td>170,000 kWh</td>
<td>$3,200</td>
<td>$12,000</td>
<td>2 Months</td>
<td>Recommended</td>
</tr>
</tbody>
</table>
Personal Benefit

• Experienced a new working environment & industry

• Interacted with people from the industry

• Reduced the gap between academic studies and real life practice

• Discovered that small changes can equal huge benefits
Any QUESTIONS?