Reducing Energy Use and Oil Mist Generation

Roberts Automatic

Chris Iacono
MnTAP Intern 2009
Advisor: Karl DeWahl
Company Overview (Not for Roberts Presentation)

- Metal parts manufacturing job shop
 - Automotive
 - Aerospace
 - Consumer

- Automatic machines
 - High production
 - High precision
MnTAP Overview

- Minnesota Technical Assistance Program
 - University of Minnesota outreach program
- Services for Minnesota businesses
 - Minimize waste and pollution
 - Resource efficiency
 - Energy reduction
- Intern program
Motivations for Change

• Production is down – energy overhead costs significant

• Physical evidence of oil misting

• Facility equipment is aging
Reasons for MnTAP Assistance

• Identify and improve large energy consumers

• Quantify and reduce oil mist levels

• Incentives for replacing equipment

• Better understanding of ventilation
Approach

- Energy consumption audit, 2,300,300 kWh annually
Approach

• Measured oil mist levels

• Identified air treatment equipment
 - Mist collectors
 - Air cleaners
 - HVAC
Determining Inefficient Processes

• Leak test
• Datalogging
• Effectiveness of air treatment equipment
• Compressed air requirements
• Air balance
• Spoke to service technicians
Compressed Air Controls

• Background
 - Adjusts volume of air produced
 - Two compressors

• Problem
 - Modulation inefficient
Compressed Air Controls

• Solution
 - Tested load/unload operation on larger unit
 - Equipment improvement
Oil Mist Generation

• Problem
 - 40 CFM, 17% capacity
 - No repair routine
• Solution
 - Leak tag system
• Realizing repairs
 - 50 HP, $500/yr
 - 75 HP, $1,000/yr
 - VSD, $1,500/yr
Weekend Air Compressor Use

- **Background**
 - Stays on for “lights out” shift

- **Problem**
 - High cost for small air volume

- **Solution**
 - Use smaller compressor
 - Master switch for shutdown
Oil Mist Generation

• Background
 - OSHA PEL = 5.0 mg/m3
 - NIOSH REL = 0.5 mg/m3

• Problem
 - Visible haze, odor, slippery floors, exposure

• Solution
 - Evaluate current levels
 - Find and reduce high sources
Oil Mist Generation

Average: 0.355 mg/m³
Max: 0.534 mg/m³
Oil Mist Generation

• High sources
 - CNC chip conveyors exits, 15.0 mg/m³
 - Acme mach. 16, 23.0 mg/m³
 - Integrex conveyor, 30.0 mg/m³

• Mist collector good practices
 - Relocate units as jobs change
 - Block unused hoses
 - Davenport door positioning
Oil Mist Generation
Ventilation

• Air-cooled condenser exhaust
 - Continuous 6,000 CFM exhaust
 - 0.4 air changes/hr
 - Cooling costs $400/yr
 - Design intent

• Compressor room manual louver
 - Heat recovery
 - Cooling costs $1,500/yr
 - Rooftop unit alternative
Successful Process Changes (Style 1)

• Small compressor for weekend use
 - $2,000/yr saved
• Recommended leak tag method
 - Potential $500-$1,000 /yr savings
• Identified oil mist contributors
 - Sources as high as 30 mg per cu. meter
Successful Process Changes (Style 2)

• Implemented estimated savings
 - $ _____
• Long-term potential savings
 - $ ______
• Mist reduction
 - _____ mg/hour oil (need to do more work to determine this figure)
Personal Benefits

- Project ownership
- Experience in a new industry setting
- Hands-on data collection, testing
Questions?