Improving Process Efficiency
Lou-Rich, Inc.
Carter Tollefson
Advisor: Jon Vanyo
Company Supervisor: Lee Gulbrandson
Company Overview

• Contract engineering and manufacturing
• Based in Albert Lea, MN
• Provides services to original equipment manufacturers (OEMs) in ag., medical device, food service, and many more
• Services include: engineering design for manufacturing services, material sourcing, welding, assembling, testing, CNC machining, fabrication, powder/liquid coatings, assembly, aluminum extrusions
Process Description

• 5 different freezers made – all follow similar processes
• Components (coils, flanges, and tubes) made
Process Continued

• Washed

• Welding tube and flange
Process Continued

- Soldering coil to tube

- *Base and inlet welding
Process Continued

• Machining Processes

• Foaming
Incentives to Change

• Commitment to process improvement
• Investigate process efficiency opportunities
• Source reduction opportunities in washing system
Reasons for MnTAP Assistance

• Investigate/implement lean opportunities
• Look for opportunities to improve operator processes
• Determine opportunities for chemical and water savings
• Reduction of inventory in work cells
Approach

• Monitored and gained understanding of processes
• Documented own ideas for improvement
• Held brainstorming sessions and documented ideas for improvement
 • Identified the types of waste and where it was occurring
Determining Solutions

• Timed processes
• Value-stream maps
• Spaghetti diagrams
• Consulting with companies
• Reviewed observations and notes
• Meetings with staff and operators
Current Layout and Part Movement

• Opportunities
 • Excess movement taking parts to and from work cells
 • Loading time onto carts and machines

• Solutions
 • Implement conveyor system between work cells
 • Change equipment orientation and locations

• Savings
 • ~260 hrs/year → $7,100/year
Washer Location
Proposed Layout
Spaghetti Diagrams

Current Movement

Proposed Movement
Coiling and Foaming Processes

- **Opportunities**
 - Inventory build up between process steps (non value adding time)
 - Excess inventory
 - Waiting
 - Order of operations efficiency

- **Solutions**
 - Creation of standard work documents
 - Training and explanation to operators

- **Savings**
 - ~420 hrs/year → $11,500/year
Current State Part Washing Process

- **Coil Washer**
 - Not performing up to washing standards
 - Chemical and water go straight to drain after one cycle

- **Hallway Washer**
 - Wash, Rinse, Blow off
 - Operators paid to load and unload parts
 - Parts from different areas washed in same washer
Proposed Improvements

• **Remove coil washer**
 • Power, water, and chemical savings
 • No chemical and water being wasted

• **Purchase New Washer and Place in Freezer Area**
 • Dual-rinse and overflow system to conserve water and reduce operator attention
 • U-shaped design
 • Current operators will be reassigned
 • No waiting for non-freezer parts
 • Elimination of forklifts and operator time transporting parts
Improvement Savings

• Savings

Coil Washer
• ~1,270 kWh/year → $100/year
• ~19,200 gal/year → $120/year
• Chemicals - 866 gal/year → $13,000/year

New Washer
• ~280 hrs/year → $7,700/year
• ~29,300 gal/year → $180/year
• Not using forklifts → $1,750/year
• Not paying operators → $2,550/year
Part and Finished Product Storage

• Opportunity
 • Large amount of inventory between work cells (space, $)
 • Trouble adjusting to order fluctuations (change-overs, shipping dates, part moving and storage)
 • Distance and time to bring components needed to assembly areas

• Solution
 • Install finished goods supermarket (buffer for changes)
 • Part supermarket (ordered and proximity to cells)
 • Pull system based on demand rather than push based on predictions

• Savings
 • ~50 hrs/year → $1,400/year
Recommended Changes

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Water (gpy)</th>
<th>Operators (hrs/year)</th>
<th>Net savings ($/year)</th>
<th>Implementation cost</th>
<th>Payback period</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layout and Conveyor System</td>
<td>0</td>
<td>260</td>
<td>$7,100</td>
<td>$5,000</td>
<td>8.5 months</td>
<td>Proposed</td>
</tr>
<tr>
<td>Implement Standard Work</td>
<td>0</td>
<td>420</td>
<td>$11,500</td>
<td>0</td>
<td>Immediate</td>
<td>Implemented</td>
</tr>
<tr>
<td>Implement New Washer</td>
<td>29,300</td>
<td>280</td>
<td>$12,180</td>
<td>$130,000</td>
<td>10.8 years</td>
<td>Proposed</td>
</tr>
<tr>
<td>Remove Coil Washer</td>
<td>19,200</td>
<td>0</td>
<td>$13,220</td>
<td>$500</td>
<td>13 days</td>
<td>Proposed</td>
</tr>
<tr>
<td>Implement Supermarkets</td>
<td>0</td>
<td>50</td>
<td>$1,400</td>
<td>$1,000</td>
<td>8.7 months</td>
<td>Proposed</td>
</tr>
<tr>
<td>Totals</td>
<td>48,500</td>
<td>1010</td>
<td>$45,400</td>
<td>$136,500</td>
<td>~3 years</td>
<td></td>
</tr>
</tbody>
</table>
Additional/Possible Future Projects

• **Compressed Air System**
 • Opportunity
 - Air leaks and processes
 • Solution
 - Documentation of usage at in each area
 - Ultrasonic leak tester to detect leaks on fixtures

• **Rinse Water Disposal**
 • Opportunity
 - $2.50/lb to dispose of water which was $26,000 over last 2 months
 • Solution
 - Water treatment system
 - Evaporator
 - Change flux type
Personal Benefits

• Real-world experience and application of education
• Knowledge of lean manufacturing principals
• Independent learning
• Communication with operators and staff
• Communication with other companies
• Teamwork
• Cost/benefit analysis
Questions?